Log in

Evaluation of two fungal exopolysaccharides as potential biomaterials for wound healing applications

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial exopolysaccharides (EPSs) are mostly produced by bacteria and fungi and have potential use in the production of biomedical products such as nutraceuticals and in tissue engineering applications. The present study investigated the in vitro biological activities and in vivo wound healing effects of EPSs produced from a Sclerotium-forming fungus (Sclerotium glucanicum DSM 2159) and a yeast (Rhodosporidium babjevae), denoted as scleroglucan (Scl) and EPS-R, respectively. EPS yields of 0.9 ± 0.07 g/L and 1.11 ± 0.4 g/L were obtained from S. glucanicum and R. babjevae, respectively. The physicochemical properties of the EPSs were characterized using infrared spectroscopy and scanning electron microscopy. Further investigations of the biological properties showed that both EPSs were cytocompatible toward the human fibroblast cell line and demonstrated  hemocompatibility. Favorable wound healing capacities of the EPSs (10 mg/mL) were also established via in vivo tests. The present study therefore showed that the EPSs produced by S. glucanicum and R. babjevae have the potential use as biocompatible components for the promotion of dermal wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ai A, Behforouz A, Ehterami A, Sadeghvaziri N, Jalali S, Farzamfar S et al (2019) Sciatic nerve regeneration with collagen type I hydrogel containing chitosan nanoparticle loaded by insulin. Int J Polym Mater Polym Biomater 68(18):1133–1141

    Article  CAS  Google Scholar 

  • Akhramez S, Fatimi A, Okoro OV, Hajiabbas M, Boussetta A, Moubarik A, Hafid A, Khouili M, Simińska-Stanny J, Brigode C, Shavandi A (2022) The circular economy paradigm: modification of bagasse-derived lignin as a precursor to sustainable hydrogel production. Sustainability 14:8791. https://doi.org/10.3390/su14148791

    Article  CAS  Google Scholar 

  • Apostolopoulos V, McKenzie IF (2001) Role of the mannose receptor in the immune response. Curr Mol Med 1(4):469–474

    Article  CAS  Google Scholar 

  • Bae J-S, Jang K-H, Park S-C, ** HK (2005a) Promotion of dermal wound healing by polysaccharides isolated from Phellinus gilvus in rats. J Vet Med Sci 67(1):111–114

    Article  CAS  Google Scholar 

  • Bae JS, Jang KH, ** HK (2005b) Polysaccharides isolated from phellinus gilvus enhances dermal wound healing in streptozotocin-induced diabetic rats. J Vet Sci 6(2):161–164

    Article  Google Scholar 

  • Chatterjee S, Mukhopadhyay SK, Gauri SS, Dey S (2018) Sphingobactan, a new α-mannan exopolysaccharide from Arctic Sphingobacterium sp. IITKGP-BTPF3 capable of biological response modification. Int Immunopharmacol 60:84–95

    Article  CAS  Google Scholar 

  • Chen T, Xu P, Zong S, Wang Y, Su N, Ye M (2017) Purification, structural features, antioxidant and moisture-preserving activities of an exopolysaccharide from Lachnum YM262. Bioorg Med Chem Lett 27(5):1225–1232

    Article  CAS  Google Scholar 

  • Cheng P-G, Phan C-W, Sabaratnam V, Abdullah N, Abdulla MA, Kuppusamy UR (2013) Polysaccharides-rich extract of Ganoderma lucidum (MA Curtis: Fr) P Karst accelerates wound healing in streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med. https://doi.org/10.1155/2013/671252

    Article  Google Scholar 

  • Comino-Sanz IM, López-Franco MD, Castro B, Pancorbo-Hidalgo PL (2021) The Role of antioxidants on wound healing: a review of the current evidence. J Clin Med 10(16):3558

    Article  CAS  Google Scholar 

  • de Torre MP, Cavero RY, Calvo MI, Vizmanos JL (2019) A simple and a reliable method to quantify antioxidant activity in vivo. Antioxidants 8(5):142

    Article  Google Scholar 

  • Decho AW, Gutierrez T (2017) Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol 8:922

    Article  Google Scholar 

  • Delattre C, Pierre G, Laroche C, Michaud P (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 34(7):1159–1179

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers, P.t. and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • El-Ghonemy DH (2021) Antioxidant and antimicrobial activities of exopolysaccharides produced by a novel Aspergillus sp DHE6 under optimized submerged fermentation conditions. Biocatal Agric Biotechnol 36:102150

    Article  CAS  Google Scholar 

  • Elsehemy IA, Noor El Deen AM, Awad HM, Kalaba MH, Moghannem SA, Tolba IH et al (2020) Structural, physical characteristics and biological activities assessment of scleroglucan from a local strain Athelia rolfsii TEMG. Int J Biol Macromol 163:1196–1207

    Article  CAS  Google Scholar 

  • Geller A, Yan J (2020) Could the induction of trained immunity by β-glucan serve as a defense against COVID-19? Front Immunol 11:1782

    Article  CAS  Google Scholar 

  • Ghada SI, Manal GM, Mohsen M, Eman AG (2012) Production and biological evaluation of exopolysaccharide from isolated Rhodotorula glutinins. Aust J Basic Appl Sci 6(3):401–408

    Google Scholar 

  • Ghalayani Esfahani A, Altomare L, Bonetti L, Nejaddehbashi F, Boccafoschi F, Chiesa R et al (2020) Micro-structured patches for dermal regeneration obtained via electrophoretic replica deposition. Appl Sci 10(14):5010

    Article  Google Scholar 

  • Hamidi M, Mirzaei R, Delattre C, Khanaki K, Pierre G, Gardarin C et al (2018) Characterization of a new exopolysaccharide produced by Halorubrum sp TBZ112 and evaluation of its anti-proliferative effect on gastric cancer cells. 3 Biotech. https://doi.org/10.1007/s13205-018-1515-5

    Article  Google Scholar 

  • Hamidi M, Gholipour AR, Delattre C, Sesdighi F, Mirzaei Seveiri R, Pasdaran A et al (2020) Production, characterization and biological activities of exopolysaccharides from a new cold-adapted yeast: Rhodotorula mucilaginosa sp. GUMS16. Int J Biol Macromol 151:268–277

    Article  CAS  Google Scholar 

  • Hamidi M, Okoro OV, Milan PB, Khalili MR, Samadian H, Nie L, Shavandi A (2022) Fungal exopolysaccharides: Properties, sources, modifications, and biomedical applications. Carbohydr Polym 284:119152

    Article  CAS  Google Scholar 

  • Hamidi M, Okoro OV, Ianiri G, Jafari H, Rashidi K, Ghasemi S et al (2022) Exopolysaccharide from the yeast Papiliotrema terrestris PT22AV for skin wound healing. J Adv Res. https://doi.org/10.1016/j.jare.2022.06.012

    Article  Google Scholar 

  • Han B, Baruah K, Cox E, Vanrompay D, Bossier P (2020) Structure-functional activity relationship of β-glucans from the perspective of immunomodulation: a mini-review. Front Immunol 11:658

    Article  CAS  Google Scholar 

  • Ho Do M, Seo YS, Park H-Y (2021) Polysaccharides: bowel health and gut microbiota. Crit Rev Food Sci Nutr 61(7):1212–1224

    Article  Google Scholar 

  • Jaroszuk-Ściseł J, Nowak A, Komaniecka I, Choma A, Jarosz-Wilkołazka A, Osińska-Jaroszuk M et al (2020) Differences in production, composition, and antioxidant activities of exopolymeric substances (EPS) obtained from cultures of endophytic fusarium culmorum strains with different effects on cereals. Molecules 25(3):616

    Article  Google Scholar 

  • Jiang P, Yuan L, Huang G, Wang X, Li X, Jiao L et al (2016) Structural properities and immunoenhancement of an exopolysaccharide produced by Phellinus pini. Intl J Biol Macromol 93:566–571

    Article  CAS  Google Scholar 

  • Keshavarz S, Azizian R, Malakootikhah J, Fathizadeh H, Hamidi M (2022) Microbial Exopolysaccharides in Additive Manufacturing. In: Baskar C, Ramakrishna S, Daniela La Rosa A (eds) Encyclopedia of Green Materials. Springer Nature, Singapore

    Google Scholar 

  • Kurečič M, Maver T, Virant N, Ojstršek A, Gradišnik L, Hribernik S et al (2018) A multifunctional electrospun and dual nano-carrier biobased system for simultaneous detection of pH in the wound bed and controlled release of benzocaine. Cellulose 25(12):7277–7297

    Article  Google Scholar 

  • Kwon A-H, Qiu Z, Hashimoto M, Yamamoto K, Kimura T (2009) Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. Am J Surg 197(4):503–509

    Article  Google Scholar 

  • Liang T-W, Tseng S-C, Wang S-L (2016) Production and characterization of antioxidant properties of exopolysaccharide (s) from Peanibacillus mucilaginosus TKU032. Mar Drugs 14(2):40

    Article  Google Scholar 

  • Liu J-S, Zeng Y-X, Bi S-Y, Zhou J-W, Cheng R, Li J et al (2021a) Characterization and chemical modification of PLN-1, an exopolysaccharide from Phomopsis liquidambari NJUSTb1. Carbohydr Polym 253:117197

    Article  CAS  Google Scholar 

  • Liu Y, Wu Q, Wu X, Algharib SA, Gong F, Hu J et al (2021b) Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: a review. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2021.01.125

    Article  Google Scholar 

  • Mahapatra S, Banerjee D (2013) Fungal exopolysaccharide: production, composition and applications. Microbiol Insights 6:S10957

    Article  Google Scholar 

  • Majtan J, Jesenak M (2018) β-Glucans: multi-functional modulator of wound healing. Molecules 23(4):806

    Article  Google Scholar 

  • Mirzaei Seveiri R, Hamidi M, Delattre C, Sedighian H, Pierre G, Rahmani B et al (2020) Characterization and prospective applications of the exopolysaccharides produced by Rhodosporidium babjevae. Adv Pharm Bull 10(2):254–263

    Article  Google Scholar 

  • Mohd Nadzir M, Nurhayati RW, Idris FN, Nguyen MH (2021) Biomedical applications of bacterial exopolysaccharides: a review. Polymers 13(4):530

    Article  Google Scholar 

  • Nissola C, Marchioro MLK, Mello EVDSL, Guidi AC, de Medeiros DC, da Silva CG, de Mello JCP, Pereira EA, Barbosa-Dekker AM, Dekker RF, Cunha MA (2021) Hydrogel containing (1 → 6)-β-D-glucan (lasiodiplodan) effectively promotes dermal wound healing. Int J of Biol Macromol 183:316–330

    Article  CAS  Google Scholar 

  • Okoro OV, Sun Z (2020) The characterisation of biochar and biocrude products of the hydrothermal liquefaction of raw digestate biomass. Biomass Convs Biorefinery. https://doi.org/10.1007/s13399-020-00672-7

    Article  Google Scholar 

  • Okoro OV, Gholipour AR, Sedighi F, Shavandi A, Hamidi M (2021) Optimization of exopolysaccharide (EPS) production by rhodotorula mucilaginosa sp GUMS16. ChemEngineering 5(3):39. https://doi.org/10.3390/chemengineering5030039

    Article  CAS  Google Scholar 

  • Pirhanov A, Bridges CM, Goodwin RA, Guo Y-S, Furrer J, Shor LM et al (2021) Optogenetics in Sinorhizobium meliloti enables spatial control of exopolysaccharide production and biofilm structure. ACS Synth Biol 10(2):345–356

    Article  CAS  Google Scholar 

  • Pretus H, Ensley H, McNamee R, Jones E, Browder IW, Williams D (1991) Isolation, physicochemical characterization and preclinical efficacy evaluation of soluble scleroglucan. J Pharmacol Exp Ther 257(1):500–510

    CAS  Google Scholar 

  • Priyanka P, Arun A, Ashwini P, Rekha P (2016) Functional and cell proliferative properties of an exopolysaccharide produced by Nitratireductor sp. PRIM-31. Int J Biol Macromol 85:400–404

    Article  CAS  Google Scholar 

  • Rana S, Upadhyay LSB (2020) Microbial exopolysaccharides: Synthesis pathways, types and their commercial applications. Int J Biol Macromol 157:577–583

    Article  CAS  Google Scholar 

  • Raveendran S, Palaninathan V, Chauhan N, Sakamoto Y, Yoshida Y, Maekawa T et al (2013) In vitro evaluation of antioxidant defense mechanism and hemocompatibility of mauran. Carbohydr Polym 98(1):108–115

    Article  CAS  Google Scholar 

  • Sajna KV, Sharma S, Nadda AK (2021) Microbial Exopolysaccharides: An Introduction. In: Nadda AK, Sajna KV, Sharma S (eds) Microbial exopolysaccharides as novel and significant biomaterials. Springer, Cham

    Google Scholar 

  • Sathishkumar R, Kannan R, **endiran S, Sivakumar N, Selvakumar G, Shyamkumar R (2021) Production and characterization of exopolysaccharide from the sponge-associated Bacillus subtilis MKU SERB2 and its in-vitro biological properties. Int J Biol Macromol 166:1471–1479

    Article  CAS  Google Scholar 

  • Selbmann L, Crognale S, Petruccioli M (2002) Exopolysaccharide production from Sclerotium glucanicum NRRL 3006 and Botryosphaeria rhodina DABAC-P82 on raw and hydrolysed starchy materials. Lett Appl Microbiol 34(1):51–55

    Article  CAS  Google Scholar 

  • Shuhong Y, Mei** Z, Hong Y, Han W, Shan X, Yan L et al (2014) Biosorption of Cu2+, Pb2+ and Cr6+ by a novel exopolysaccharide from Arthrobacter ps-5. Carbohydr Polym 101:50–56

    Article  Google Scholar 

  • Sitepu IR, Sestric R, Ignatia L, Levin D, German JB, Gillies LA et al (2013) Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresource Technol 144:360–369

    Article  CAS  Google Scholar 

  • Sun M-L, Zhao F, Shi M, Zhang X-Y, Zhou B-C, Zhang Y-Z et al (2015a) Characterization and biotechnological potential analysis of a new exopolysaccharide from the Arctic marine bacterium Polaribacter sp SM1127. Sci Rep 5(1):1–12

    Article  Google Scholar 

  • Sun M-L, Zhao F, Shi M, Zhang X-Y, Zhou B-C, Zhang Y-Z et al (2015b) Characterization and Biotechnological Potential Analysis of a New Exopolysaccharide from the Arctic Marine Bacterium Polaribacter sp SM1127. Sci Rep 5(1):18435

    Article  CAS  Google Scholar 

  • Sun M-L, Zhao F, Chen X-L, Zhang X-Y, Zhang Y-Z, Song X-Y et al (2020) Promotion of wound healing and prevention of frostbite injury in rat skin by exopolysaccharide from the arctic marine bacterium polaribacter sp SM1127. Mar Drugs 18(1):48

    Article  CAS  Google Scholar 

  • Trabelsi I, Ktari N, Slima SB, Triki M, Bardaa S, Mnif H et al (2017) Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp. Ca6. Int J Biol Macromol 103:194–201

    Article  CAS  Google Scholar 

  • Uhliariková I, Šutovská M, Barboríková J, Molitorisová M, Kim HJ, Park YI et al (2020) Structural characteristics and biological effects of exopolysaccharide produced by cyanobacterium Nostoc sp. Int J Biol Macromol 160:364–371

    Article  Google Scholar 

  • Valdez AL, Babot JD, Schmid J, Delgado OD, Fariña JI (2019) Scleroglucan production by Sclerotium rolfsii ATCC 201126 from amylaceous and sugarcane molasses-based media: Promising insights for sustainable and ecofriendly scaling-up. J Polym Environ 27(12):2804–2818

    Article  CAS  Google Scholar 

  • Vasanthakumari DS, Harikumar S, Beena DJ, Pandey A, Nampoothiri KM (2015) Physicochemical characterization of an exopolysaccharide produced by a newly isolated Weissella cibaria. Appl Biochem Biotechnol 176(2):440–453

    Article  CAS  Google Scholar 

  • Viñarta SC, Delgado OD, Figueroa LI, Fariña JI (2013) Effects of thermal, alkaline and ultrasonic treatments on scleroglucan stability and flow behavior. Carbohydr Polym 94(1):496–504

    Article  Google Scholar 

  • Wang J, Hu S, Nie S, Yu Q, **e M (2016) Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid Med Cell Longev. https://doi.org/10.1155/2016/5692852

    Article  Google Scholar 

  • Wang J, Wu T, Fang X, Min W, Yang Z (2018) Characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus plantarum JLK0142 isolated from fermented dairy tofu. Int J Biol Macromol 115:985–993

    Article  CAS  Google Scholar 

  • Williams C (1999) An investigation of the benefits of Aquacel Hydrofibre wound dressing. B J Nurs 8(10):676–680

    Article  CAS  Google Scholar 

  • Wu J, Yan D, Liu Y, Luo X, Li Y, Cao C et al (2021) Purification, structural characteristics, and biological activities of exopolysaccharide isolated from leuconostoc mesenteroides SN-8. Front Microbiol 12:644226

    Article  Google Scholar 

  • **a M, Zhang S, Shen L, Yu R, Liu Y, Li J et al (2022) Optimization and characterization of an antioxidant exopolysaccharide produced by cupriavidus pauculus 1490. J Polym Environ 30(5):2077–2086

    Article  CAS  Google Scholar 

  • Zeng W, Wang J, Shan X, Yu S, Zhou J (2021) Efficient production of scleroglucan by sclerotium rolfsii and insights into molecular weight modification by high-pressure homogenization. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2021.748213

    Article  Google Scholar 

  • Zhong C, Cao G, Rong K, **a Z, Peng T, Chen H et al (2018) Characterization of a microbial polysaccharide-based bioflocculant and its anti-inflammatory and pro-coagulant activity. Colloids Surf B Biointerfaces 161:636–644

    Article  CAS  Google Scholar 

  • Zhu Y, Wang C, Jia S, Wang B, Zhou K, Chen S et al (2018) Purification, characterization and antioxidant activity of the exopolysaccharide from Weissella cibaria SJ14 isolated from Sichuan paocai. Int J Biol Macromol 115:820–828

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.H would like to acknowledge the postdoctoral fellowship provided by the European Program IF@ULB-MARIE SKŁODOWSKA-CURIE Cofund Action (European Horizon 2020). This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 801505. The graphical abstract was prepared using Biorender.com. Also, we must thank Dr. Mahta Mirzaei for her kind help in cell viability assays. The CARAMAT platform at the ULB also received acknowledgement from the authors for its help with SEM investigation.

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 801505.

Author information

Authors and Affiliations

Authors

Contributions

MH: conceptualization, methodology, formal analysis, investigation, validation, writing-original draft, writing-review & editing. OVO: writing-original draft, writing-review & editing. KR: investigation, writing-review & editing. MSS: investigation, writing-review & editing. RMS: investigation, writing-review & editing. HS: investigation, supervision, validation, writing-review & editing. AS: resources, supervision, writing-review & editing, project administration.

Corresponding authors

Correspondence to Hadi Samadian or Amin Shavandi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The animal experiments were conducted in accordance with the National Institute of Health guidelines and the European Communities Council Directive (2010/63/EU) and approved by Kermanshah University of Medical Sciences (IR.KUMS.REC.1400.247).

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 66 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidi, M., Okoro, O.V., Rashidi, K. et al. Evaluation of two fungal exopolysaccharides as potential biomaterials for wound healing applications. World J Microbiol Biotechnol 39, 49 (2023). https://doi.org/10.1007/s11274-022-03459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-022-03459-2

Keywords

Navigation