Log in

Construction of a stable genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

One rhamnolipid-producing bacterial strain named Pseudomonas aeruginosa BSFD5 was isolated and characterized. Its rhlABRI cassette including necessary genes for rhamnolipid synthesis was cloned and transformed into the chromosome of P. putida KT2440 by a new random transposon vector without introducing antibiotic-resistance marker, generating a genetically engineered microorganism named P. putida KT2440-rhlABRI, which could stably express the rhlABRI cassette and produce rhamnolipid at a yield of 1.68 g l−1. In experiments using natural soil, it was shown that P. putida KT2440-rhlABRI could increase the dissolution of pyrene and thus promote its degradation by indigenous microorganisms. P. putida KT2440-rhlABRI thus demonstrated potential for enhancing the remediation of soils contaminated with polycyclic aromatic hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abalos A, Vinas M, Sabat J, Manresa M, Solanas A (2004) Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation 15:249–260

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  Google Scholar 

  • Cameotra SS, Makkar RS, Kaur J, Mehta S (2010) Synthesis of biosurfactants and their advantages to microorganisms and mankind. Adv Exp Med Biol 672:261–280

    Article  CAS  Google Scholar 

  • Cha M, Lee N, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99:2192–2199

    Article  CAS  Google Scholar 

  • Chen SY, Lu WB, Wei YH, Chen WM, Chang JS (2007) Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Biotechnol Progr 23:661–666

    Article  CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2009) Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour Technol 100:4887–4890

    Article  CAS  Google Scholar 

  • Georgiou G, Lin SC, Sharma MM (1992) Surface-active compounds from microorganisms. Biotechnology 10:60–65

    Article  CAS  Google Scholar 

  • Gottfried A, Singhal N, Elliot R, Swift S (2010) The role of salicylate and biosurfactant in inducing phenanthrene degradation in batch soil slurries. Appl Microbiol Biotechnol 86:1563–1571

    Article  CAS  Google Scholar 

  • Haro MA, Lorenzo V (2001) Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J Biotechnol 85:103–113

    Article  CAS  Google Scholar 

  • Holt GS, Kriey RN, Sneath APH, Staley TJ, Williams TS (1998) Bergey’s manual of determinative bacteriology. Williams and Wilkins, New York

    Google Scholar 

  • Hong YF, Zhou J, Hong Q, Wang Q, Jiang JD, Li SP (2010) Characterization of a fenpropathrin-degrading strain and construction of a genetically engineered microorganism for simultaneous degradation of methyl parathion and fenpropathrin. J Environ Manage 91:2295–2300

    Article  CAS  Google Scholar 

  • Jarvis FG, Johnson MJ (1949) A glycolipid produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126

    Article  CAS  Google Scholar 

  • ** RF, Yang H, Zhang AL, Wang J, Liu GF (2009) Bioaugmentation on decolorization of CI Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR). J Hazard Mater 163:1123–1128

    Article  CAS  Google Scholar 

  • Koch AK, Kappeli O, Fiechter A, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173:4212–4219

    CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing, 115–175. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester

    Google Scholar 

  • Li R, Wang GL, Shen B, Wang R, Song Y, Li SP, Jiang JD (2009) Random transposon vectors pUTTns for the markerless integration of exogenous genes into gram-negative eubacteria chromosomes. J Microbiol Methods 79:220–226

    Article  CAS  Google Scholar 

  • Liu Z, Hong Q, Xu JH, Jun W, Li SP (2006) Construction of a genetically engineered microorganism for degrading organophosphate and carbamate pesticides. Int Biodeterior Biodegrad 58:65–69

    Article  CAS  Google Scholar 

  • Miller AS, Dykes DD, Polesky FH (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  CAS  Google Scholar 

  • Neto DC, Meira JA, Tiburtius E, Zamora PP, Bugay C, Mitchell DA, Krieger N (2009) Production of rhamnolipids in solid state cultivation: characterization, downstream processing and application in the cleaning of contaminated soils. Biotechnol J 4:748–755

    Article  Google Scholar 

  • Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. PNAS 92:6424–6428

    Article  CAS  Google Scholar 

  • Ochsner UA, Koch AK, Fiechter A, Reiser J (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044–2054

    CAS  Google Scholar 

  • Owsianiak M, Chrzanowski L, Szulc A, Staniewski J, Olszanowski A, Olejnik-Schmidt AK, Heipieper HJ (2009) Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: effect of the type of blend and the addition of biosurfactants. Bioresour Technol 100:1497–1500

    Article  CAS  Google Scholar 

  • Perfumo A, Banat IM, Canganella F, Marchant R (2006) Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02–1. Appl Microbiol Biotechnol 72:132–138

    Article  CAS  Google Scholar 

  • Quesada E, Béjar V, Calvo C (1993) Exopolysaccharide production by Volcaniella eurihalina. Cell Mol Life Sci 49:1037–1041

    Article  CAS  Google Scholar 

  • Rahman K, Banat I, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresour Technol 81:25–32

    Article  CAS  Google Scholar 

  • Register F (1982) Certified host-vector systems. Washington, DC 47:17197

  • Sanchez M, Aranda FJ, Espuny MJ, Marques A, Teruel JA, Manresa A, Ortiz A (2007) Aggregation behaviour of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa in aqueous media. J Colloid Interface Sci 307:246–253

    Article  CAS  Google Scholar 

  • Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28:436–450

    Article  CAS  Google Scholar 

  • Sayler GS, Hooper SW, Layton AC, King JMH (1990) Catabolic plasmids of environmental and ecological significance. Microbiol Ecol 19:1–20

    Article  CAS  Google Scholar 

  • Seghal Kiran G, Anto Thomas T, Selvin J, Sabarathnam B, Lipton A (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 101:2389–2396

    Article  CAS  Google Scholar 

  • Sivapathasekaran C, Mukherjee S, Ray A, Gupta A, Sen R (2010) Artificial neural network modeling and genetic algorithm based medium optimization for the improved production of marine biosurfactant. Bioresour Technol 101:2884–2887

    Article  CAS  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Natural Science Fund (31070099, 30830001 and 31000060), Natural Science Foundation of Jiangsu Province, China (BK2009312), the Opening Fund of State Key Laboratory of Soil and Sustainable Agriculture (Y052010025) and the Major Technology Special Social Development Project (2007C13059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, L., Wang, Q., Zhang, J. et al. Construction of a stable genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil. World J Microbiol Biotechnol 28, 2783–2790 (2012). https://doi.org/10.1007/s11274-012-1088-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1088-0

Keywords

Navigation