Log in

Treating Textile Wastewater to Achieve Zero Liquid Discharge: a Comprehensive Techno-economic Analysis

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

As a result of global warming, water scarcity has become a growing concern in many parts of the world. The textile industry is one of the largest water-consumer industries that discharge untreated or partially treated wastewater into water bodies. Therefore, it is necessary to consider the wastewater quantity generated by textile industries to investigate how it is recovered and recycled. For this purpose, applying near and/or zero liquid discharge (ZLD) in the textile industry wastewater treatment is a strategic wastewater management option. Although the process is costly, technological advancements in recovering the water and other salts can pave the way for economic feasibility. This study encompasses the techno-economic analysis of textile wastewater treatment to achieve ZLD. The technologies already in use are discussed in terms of performance, cost, and limitations. An efficient pre-treatment of textile wastewater treatment could improve water recovery and decrease the operating cost of ZLD. We also discussed the ZLD applications for textile wastewater treatment, their problems, and their cost-benefit analysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

This is a review article; therefore, no data sharing is applicable.

References

  • Ağtaş, M., Yılmaz, Ö., Dilaver, M., Alp, K., & Koyuncu, İ. (2020). Hot water recovery and reuse in textile sector with pilot scale ceramic ultrafiltration/nanofiltration membrane system. Journal of Cleaner Production, 256, 120359.

    Google Scholar 

  • Ağtaş, M., Yılmaz, Ö., Dilaver, M., Alp, K., & Koyuncu, İ. (2021). Pilot-scale ceramic ultrafiltration/nanofiltration membrane system application for caustic recovery and reuse in textile sector. Environmental Science and Pollution Research, 28, 41029–41038.

    Google Scholar 

  • Ahmed, M., Shayya, W. H., Hoey, D., Mahendran, A., Morris, R., & Al-Handaly, J. (2000). Use of evaporation ponds for brine disposal in desalination plants. Desalination, 130(2), 155–168.

    CAS  Google Scholar 

  • Al-Obaidani, S., Curcio, E., Macedonio, F., Di Profio, G., Al-Hinai, H., & Drioli, E. (2008). Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science , 323, 85–98.

    CAS  Google Scholar 

  • Al-Buriahi, A. K., Al-Gheethi, A. A., Kumar, P. S., Mohamed, R. M. S. R., Yusof, H., Alshalif, A. F., & Khalifa, N. A. (2022). Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere, 287, 132162.

    CAS  Google Scholar 

  • Allègre, C., Moulin, P., Maisseu, M., & Charbit, F. (2004). Savings and re-use of salts and water present in dye house effluents. Desalination. https://doi.org/10.1016/S0011-9164(04)00022-0

  • Amutha, K. (2017). Sustainable chemical management and zero discharges. In Sustainable fibres and textiles (pp. 347–366). https://doi.org/10.1016/B978-0-08-102041-8.00012-3

    Chapter  Google Scholar 

  • Aquino Neto, S., & De Andrade, A. R. (2009). Electrochemical degradation of glyphosate formulations at DSA ® anodes in chloride medium: An AOX formation study. Journal of Applied Electrochemistry. https://doi.org/10.1007/s10800-009-9890-6

  • Arnal, J. M., León, M. C., Lora, J., Gozálvez, J. M., Santafé, A., Sanz, D., & Tena, J. (2008). Ultrafiltration as a pre-treatment of other membrane technologies in the reuse of textile wastewaters. Desalination, 221(1–3), 405–412.

    CAS  Google Scholar 

  • Babu, B. R., Parande, A. K., Raghu, S., & Prem Kumar, T. (2007). Cotton textile processing: Waste generation and effluent treatment. Journal of Cotton Science, 11, 141–153.

    CAS  Google Scholar 

  • Bahadur, N., & Bhargava, N. (2019). Novel pilot scale photocatalytic treatment of textile & dyeing industry wastewater to achieve process water quality and enabling zero liquid discharge. Journal of Water Process Engineering, 32. https://doi.org/10.1016/j.jwpe.2019.100934

  • Bilińska, L., Blus, K., Gmurek, M., & Ledakowicz, S. (2019). Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chem. Eng. J., 358, 992–1001. https://doi.org/10.1016/j.cej.2018.10.093

    Article  CAS  Google Scholar 

  • Bilińska, L., Gmurek, M., & Ledakowicz, S. (2016). Comparison between industrial and simulated textile wastewater treatment by AOPs – Biodegradability, toxicity and cost assessment. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2016.07.100

  • Camacho, L. M., Dumée, L., Zhang, J., Li, J., Duke, M., Gomez, J., & Gray, S. (2013). Advances in membrane distillation for water desalination and purification applications. Water, 5(1), 94–196.

    Google Scholar 

  • Casas, S., Bonet, N., Aladjem, C., Cortina, J. L., Larrotcha, E., & Cremades, L. V. (2011). Modelling sodium chloride concentration from seawater reverse osmosis brine by electrodialysis: Preliminary results. Solvent Extraction and Ion Exchange, 29(3), 488–508.

    CAS  Google Scholar 

  • Çelebi, M. D., Dilaver, M., & Kobya, M. (2021). A study of inline chemical coagulation/precipitation-ceramic microfiltration and nanofiltration for reverse osmosis concentrate minimization and reuse in the textile industry. Water Science and Technology, 84(9), 2457–2471.

    Google Scholar 

  • Charisiadis, C. (2018). Brine Zero Liquid Discharge ( ZLD ) Fundamentals and Design. Lenntech Water Treatment Solutions, (1), 1–76.

  • Chehayeb, K. M., & Lienhard, J. H. (2019). On the electrical operation of batch electrodialysis for reduced energy consumption. Environ. Sci. Water Res. Technol., 5, 1172–1182.

    CAS  Google Scholar 

  • Choudhury, A. K. R. (2021). Technologies for the management of wastewater generated in wet processing. Waste Management in the Fashion and Textile Industries (pp. 99–129). Woodhead Publishing.

    Google Scholar 

  • Chougule, M. B., & Sonaje, N. P. (2013). Cost-benefit analysis of wastewater recycling plant for textile wet processing. International Journal Of Computational Engineering Research (ijceronline.com), 31(1), 2250–3005.

    Google Scholar 

  • Cinperi, N. C., Ozturk, E., Yigit, N. O., & Kitis, M. (2019). Treatment of woolen textile wastewater using membrane bioreactor, nanofiltration and reverse osmosis for reuse in production processes. Journal of Cleaner Production, 223, 837–848. https://doi.org/10.1016/j.jclepro.2019.03.166

    Article  CAS  Google Scholar 

  • Ćurić, I., & Dolar, D. (2022). Investigation of pretreatment of textile wastewater for membrane processes and reuse for washing dyeing machines. Membranes, 12(5), 449.

    Google Scholar 

  • Dasgupta, J., Sikder, J., Chakraborty, S., Curcio, S., & Drioli, E. (2015). Remediation of textile effluents by membrane based treatment techniques: A state of the art review. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2014.08.008

  • Dilaver, M., Hocaoğlu, S. M., Soydemir, G., Dursun, M., Keskinler, B., Koyuncu, İ., & Ağtaş, M. (2018). Hot wastewater recovery by using ceramic membrane ultrafiltration and its reusability in textile industry. Journal of Cleaner Production, 171(2), 220–233. https://doi.org/10.1016/j.jclepro.2017.10.015

    Article  CAS  Google Scholar 

  • Eykens, L., De Sitter, K., Dotremont, C., Pinoy, L., & Van der Bruggen, B. (2016). How to optimize the membrane properties for membrane distillation: A review. Industrial & Engineering Chemistry Research, 55(35), 9333–9343.

    CAS  Google Scholar 

  • Ezugbe, E. O., & Rathilal, S. (2020). Membrane technologies in wastewater treatment: A review. In Membranes (Vol. 10, Issue 5). https://doi.org/10.3390/membranes10050089

  • Francis, A., & Sosamony, K. J. (2016). Treatment of pre-treated textile wastewater using moving bed bio-film reactor. Procedia Technology, 24, 248–255. https://doi.org/10.1016/j.protcy.2016.05.033

    Article  Google Scholar 

  • Gander, M., Jefferson, B., & Judd, S. (2000). Aerobic MBRs for domestic wastewater treatment: a review with cost considerations. Sep. Purif. Technol., 18, 119–130.

    CAS  Google Scholar 

  • Ghaly, A., Ananthashankar, R., Alhattab, M., Ramakrishnan, V., & Ghaly, A. (2014). Production, Characterization and Treatment of Textile Effluents: A Critical Review. Journal of Chemical Engineering & Process Technology, 5(1), 1–18. https://doi.org/10.4172/2157-7048.1000182

    Article  CAS  Google Scholar 

  • Gilron, J., Folkman, Y., Savliev, R., Waisman, M., & Kedem, O. (2003). WAIV—Wind aided intensified evaporation for reduction of desalination brine volume. Desalination, 158(1–3), 205–214.

    CAS  Google Scholar 

  • Gopalakrishnan, M., Punitha, V., & Saravanan, D. (2019). Water conservation in textile wet processing. Water in textiles and fashion Woodhead Publishing, 135–153,. https://doi.org/10.1016/B978-0-08-102633-5.00008-7

  • Gude, V. G. (2018). Emerging technologies for sustainable desalination handbook. In Emerging technologies for sustainable desalination handbook. https://doi.org/10.1016/C2017-0-03562-0

    Chapter  Google Scholar 

  • Gursoy-Haksevenler, B. H., Atasoy-Aytis, E., Dilaver, M., Yalcinkaya, S., Findik-Cinar, N., Kucuk, E., Pilevneli, T., Koc-Orhon, A., Siltu, E., Gücver, S. M., Karaaslan, Y., & Yetis, U. (2020). A strategy for the implementation of water-quality-based discharge limits for the regulation of hazardous substances. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-10220-5

  • Gurreri, L., Tamburini, A., Cipollina, A., & Micale, G. (2020). Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives. Membranes (Basel)., 10, 146.

    CAS  Google Scholar 

  • Ho, J. S., Ma, Z., Qin, J., Sim, S. H., & Toh, C. S. (2015). Inline coagulation-ultrafiltration as the pretreatment for reverse osmosis brine treatment and recovery. Desalination, 365, 242–249. https://doi.org/10.1016/j.desal.2015.03.018

    Article  CAS  Google Scholar 

  • Hussain, I. S., & Head, O. M. (2012). Case study of a zero liquid discharge facility in textile dyeing effluents at tirupur. One Day National Workshop on CETPs. https://docplayer.net/79763330-Case-study-of-a-zero-liquid-discharge-facility-in-textile-dyeing-effluents-at-tirupur.html

  • Hutcherson, J. R. (2015). A comparison of electrocoagulation and chemical coagulation treatment effectiveness on frac flowback and produced water. ProQuest Dissertations and Theses.

    Google Scholar 

  • Jhaveri, J. H., & Murthy, Z. V. P. (2016). A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination, 379, 137–154.

    CAS  Google Scholar 

  • Juby, G., Zacheis, A., Shih, W., Ravishanker, P., Mortazavi, B., & Nusser, M. D. (2008). Evaluation and selection of available processes for a zero-liquid discharge system for the Perris, California. Ground Water Basin, Issue 149 of Desalination and Water Purification Research and Development Program Report.

  • Keskin, B., Ersahin, M. E., Ozgun, H., & Koyuncu, I. (2021). Pilot and full-scale applications of membrane processes for textile wastewater treatment: A critical review. Journal of Water Process Engineering, 42, 102172.

    Google Scholar 

  • Kiran-Ciliz, N. (2003). Reduction in resource consumption by process modifications in cotton wet processes. Journal of Cleaner Production. https://doi.org/10.1016/S0959-6526(02)00069-0

  • Kobya, M., Demirbas, E., & Akyol, A. (2009). Electrochemical treatment and operating cost analysis of textile wastewater using sacrificial iron electrodes. Water Science and Technology. https://doi.org/10.2166/wst.2009.672

  • Krist, H., Schäfer, T., Schönberger, H., Hussain Inayath, S., Govindarajan, B., Kandhaswamy, R., Maruthamuthu, N., Baumann, C., Shahzad, H. M. A., & Minke, R. (2018). Integrated Best Available Wastewater Management in the Textile Industry, 241, 1–190.

    Google Scholar 

  • Latour, I., Miranda, R., & Blanco, A. (2014a). Silica removal in industrial effluents with high silica content and low hardness. Environmental Science and Pollution Research, 21(16), 9832–9842. https://doi.org/10.1007/s11356-014-2906-8

    Article  CAS  Google Scholar 

  • Latour, I., Miranda, R., & Blanco, A. (2014b). Silica removal with sparingly soluble magnesium compounds. Part i. Separation and Purification Technology, 138, 210–218. https://doi.org/10.1016/j.seppur.2014.10.016

    Article  CAS  Google Scholar 

  • Lee, H.-J., Sarfert, F., Strathmann, H., & Moon, S.-H. (2002). Designing of an electrodialysis desalination plant. Desalination, 142, 267–286. https://doi.org/10.1016/S0011-9164(02)00208-4

    Article  CAS  Google Scholar 

  • Li, M., Li, K., Wang, L., & Zhang, X. (2020). Feasibility of concentrating textile wastewater using a hybrid forward osmosis-membrane distillation (FO-MD) process: Performance and economic evaluation. Water Research. https://doi.org/10.1016/j.watres.2020.115488

  • Lin, J., Ye, W., Huang, J., Ricard, B., Baltaru, M.-C., Greydanus, B., Balta, S., Shen, J., Vlad, M., & Sotto, A. (2015). Toward resource recovery from textile wastewater: Dye extraction, water and base/acid regeneration using a hybrid NF-BMED process. ACS Sustainable Chemistry & Engineering, 3(9), 1993–2001.

    CAS  Google Scholar 

  • Linares, R.V., Li, Z., Elimelech, M., Amy, G., Vrouwenvelder, H., 2017. Recent developments in forward osmosis processes. IWA Publishing.

  • Liu, E., Lee, L. Y., Ong, S. L., & Ng, H. Y. (2020). Treatment of industrial brine using capacitive deionization (CDI) towards zero liquid discharge – Challenges and optimization. Water Research, 183, 116059. https://doi.org/10.1016/j.watres.2020.116059

    Article  CAS  Google Scholar 

  • Ly, Q. V., Hu, Y., Li, J., Cho, J., & Hur, J. (2019). Characteristics and influencing factors of organic fouling in forward osmosis operation for wastewater applications: A comprehensive review. Environ. Int., 129, 164–184. https://doi.org/10.1016/j.envint.2019.05.033

    Article  CAS  Google Scholar 

  • Lozier, J. C., Erdal, U. G., Lynch, A. F., & Schindler, S. (2007). Evaluating traditional and innovative concentrate treatment and disposal methods for water recycling at Big Bear Valley, California. In 2007 Membrane Technology Conference and Exposition Proceedings. https://doi.org/10.2175/193864708788803848

    Chapter  Google Scholar 

  • Mahvi, A. H., Shafiee, F., & Naddafi, K. (2005). Feasibility study of crystallization process for water softening in a pellet reactor. International Journal of Environmental Science & Technology, 1(4), 301–304. https://doi.org/10.1007/bf03325846

    Article  CAS  Google Scholar 

  • Mani, P., & Madhusudanan, M. (2014). Zero liquid discharge scheme in a common effluent treatment plant for textile industries in Tamilnadu, India. Nature Environment and Pollution Technology, 13(4), 769–774.

    CAS  Google Scholar 

  • Mazlan, N.M., Peshev, D., Livingston, A.G., (2016). Energy consumption for desalination — A comparison of forward osmosis with reverse osmosis, and the potential for perfect membranes. Desalination 377, 138–151. https://doi.org/10.1016/j.desal.2015.08.011

  • Mohan, S., Oke, N., & Gokul, D. (2021). Conventional and zero liquid discharge treatment plants for textile wastewater through the lens of carbon footprint analysis. Journal of Water and Climate Change, 12(5), 1392–1403.

    Google Scholar 

  • Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Altman, D., Antes, G., Atkins, D., Barbour, V., Barrowman, N., Berlin, J. A., Clark, J., Clarke, M., Cook, D., D’Amico, R., Deeks, J. J., Devereaux, P. J., Dickersin, K., Egger, M., Ernst, E., et al. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7). https://doi.org/10.1371/journal.pmed.1000097

  • Moreira, V. R., Lebron, Y. A. R., Couto, C. F., Maia, A., Moravia, W. G., & Amaral, M. C. S. (2022). Process development for textile wastewater treatment towards zero liquid discharge: Integrating membrane separation process and advanced oxidation techniques. Process Safety and Environmental Protection, 157, 537–546. https://doi.org/10.1016/j.psep.2021.10.037

    Article  CAS  Google Scholar 

  • Mukherjee, D., Van der Bruggestn, B., & Mandal, B. (2022). Advancements in visible light responsive MOF composites for photocatalytic decontamination of textile wastewater: A review. Chemosphere, 133835.

  • Nandy, T., Manekar, P., Dhodapkar, R., Pophali, G., & Devotta, S. (2007). Water conservation through implementation of ultrafiltration and reverse osmosis system with recourse to recycling of effluent in textile industry-A case study. Resources, Conservation and Recycling, 51(1), 64–77. https://doi.org/10.1016/j.resconrec.2006.08.004

    Article  Google Scholar 

  • Onishi, V. C., Reyes-Labarta, J. A., & Caballero, J. A. (2019). Membrane desalination in shale gas industry. In Current trends and future developments on (bio-) membranes (pp. 243–267). https://doi.org/10.1016/b978-0-12-813551-8.00010-3

    Chapter  Google Scholar 

  • Osipi, S.R., Secchi, A.R., Borges, C.P., 2020. 13 - Cost analysis of forward osmosis and reverse osmosis in a case study, in: Basile, A., Cassano, A., Rastogi, N.K.B.T.-C.T. and F.D. on (Bio-) M. (Eds.), . Elsevier, pp. 305–324. https://doi.org/10.1016/B978-0-12-816777-9.00013-7

  • Oren, Y., Korngold, E., Daltrophe, N., Messalem, R., Volkman, Y., Aronov, L., Weismann, M., Bouriakov, N., Glueckstern, P., & Gilron, J. (2010). Pilot studies on high recovery BWRO-EDR for near zero liquid discharge approach. Desalination, 261(3), 321–330.

  • Pal, P. (2017). Industrial water treatment process technology. 1st, edition, Butterworth-Heinemann.

  • Panagopoulos, A., Haralambous, K.-J., & Loizidou, M. (2019). Desalination brine disposal methods and treatment technologies-A review. Science of the Total Environment, 693, 133545

  • Panagopoulos, A., & Haralambous, K. J. (2020). Minimal liquid discharge (mld) and zero liquid discharge (ZLD) strategies for wastewater management and resource recovery-Analysis, challenges and prospects. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2020.104418

  • Panagopoulos, A. (2021a). Techno-economic assessment of minimal liquid discharge ( MLD ) treatment systems for saline wastewater ( brine ) management and treatment. Process Saf. Environ. Prot., 146, 656–669. https://doi.org/10.1016/j.psep.2020.12.007

  • Panagopoulos, A. (2021b). Energetic, economic and environmental assessment of zero liquid discharge ( ZLD ) brackish water and seawater desalination systems. Energy Convers. Manag., 235,

  • Panagopoulos, A., (2020a). Process simulation and techno‐economic assessment of a zero liquid discharge/multi ‐effect desalination/thermal vapor compression (ZLD/MED/ TVC) system 473–495. https://doi.org/10.1002/er.4948

  • Panagopoulos, A. (2020b). A comparative study on minimum and actual energy consumption for the treatment of desalination brine. Energy, 212,

  • Panagopoulos, A. (2020c). Chemical Engineering & Processing : Process Intensi fi cation Techno-economic evaluation of a solar multi - e ff ect distillation / thermal vapor compression hybrid system for brine treatment and salt recovery. Chem. Eng. Process. Process Intensif., 152,

  • Panagopoulos, A., & Haralambous, K. (2020a). Environmental impacts of desalination and brine treatment - Challenges and mitigation measures. Marine Pollution Bulletin, 161, 111773. https://doi.org/10.1016/j.marpolbul.2020.111773

  • Panagopoulos, A., & Haralambous, K. (2020b). Journal of Environmental Chemical Engineering Minimal Liquid Discharge (MLD ) and Zero Liquid Discharge (ZLD) strategies for wastewater management and resource recovery – Analysis, challenges and prospects. Journal of Environmental Chemical Engineering, 8, 104418. https://doi.org/10.1016/j.jece.2020.104418

  • Pannirselvam, M., Shu, L., Griffin, G., Philip, L., Natarajan, A., & Hussain, S. (2019). Water Scarcity and ways to reduce the impact. Management strategies and technologies for zero liquid discharge and future smart cities. Applied Environmental Science and Engineering for a Sustainable Future, Springer.

  • Patel, H., & Vashi, R. T. (2015). Characterization and treatment of textile wastewater. In Characterization and treatment of textile wastewater. Elsevier. https://doi.org/10.1016/c2014-0-02395-7

    Chapter  Google Scholar 

  • Pérez-González, A., Urtiaga, A. M., Ibáñez, R., & Ortiz, I. (2012). State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Research, 46(2), 267–283. https://doi.org/10.1016/j.watres.2011.10.046

    Article  CAS  Google Scholar 

  • Praneeth, K., Manjunath, D., Bhargava, S. K., Tardio, J., & Sridhar, S. (2014). Economical treatment of reverse osmosis reject of textile industry effluent by electrodialysis-evaporation integrated process. Desalination, 331(1), 82–91. https://doi.org/10.1016/j.desal.2013.11.020

  • Ranganathan, K., Karunagaran, K., & Sharma, D. C. (2007). Recycling of wastewaters of textile dyeing industries using advanced treatment technology and cost analysis-Case studies. Resources, Conservation and Recycling, 50(3), 306–318. https://doi.org/10.1016/j.resconrec.2006.06.004

    Article  Google Scholar 

  • Roy, D., Rahni, M., Pierre, P., & Yargeau, V. (2016). Forward osmosis for the concentration and reuse of process saline wastewater. Chem. Eng. J., 287, 277–284. https://doi.org/10.1016/j.cej.2015.11.012

    Article  CAS  Google Scholar 

  • Sahinkaya, E., Sahin, A., Yurtsever, A., & Kitis, M. (2018). Concentrate minimization and water recovery enhancement using pellet precipitator in a reverse osmosis process treating textile wastewater. Journal of Environmental Management, 222, 420–427. https://doi.org/10.1016/j.jenvman.2018.05.057

    Article  CAS  Google Scholar 

  • Samanta, K. K., Pandit, P., Samanta, P., & Basak, S. (2019). Water consumption in textile processing and sustainable approaches for its conservation. Water in Textiles and Fashion (pp. 41–59). Woodhead Publishing.

    Google Scholar 

  • Samhaber, W. M., & Nguyen, M. T. (2014). Applicability and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents. Beilstein Journal of Nanotechnology. https://doi.org/10.3762/bjnano.5.55

  • Sankar, P. R., & Rajesh, S. (2017). A Study on Zero Liquid Discharge Plant for Dyeing Industry 5(4), 67–72.

    Google Scholar 

  • Selvan, S., & Kumar, V. N. (2008). Evaluation of pretreatment processes for ZLD plants for treating composite dyeing effluent streams. Control Pollution, 24(2), 173–175.

    Google Scholar 

  • Shahid, S. B., Rashid, I., & Mamtaz, R. (2018). Performance evaluatıon of uasb followed by dhs reactor treatment process and ıts cost ın treatıng textıle wastewater. Proceedings of the 4th International Conference on Civil Engineering for Sustainable Development (ICCESD 2018). Khulna, Bangladesh: KUET.

    Google Scholar 

  • Shaikh, M. A. (2009). Water conservation in textile industry. Pakistan Textile Journal, 58(11), 48–51.

    Google Scholar 

  • Shih, W., Yallaly, B., Marshall, M., & Demichelle, D. (2013). Chino ii desalter concentrate management via innovative byproduct resale and treatment. AMTA/AWWA Membrane Technology Conference and Exposition, 2013.

  • Shindhal, T., Rakholiya, P., Varjani, S., Pandey, A., Ngo, H. H., Guo, W., Ng, H. Y., & Taherzadeh, M. J. (2021). A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered, 12(1), 70–87.

    CAS  Google Scholar 

  • Sheng, P., Dong, Y., & Vochozka, M. (2020). Analysis of cost-effective methods to reduce industrial wastewater emissions in China. Water, 12, 1600.

    CAS  Google Scholar 

  • Shu, L., Pannirselvam, M., & Jegatheesan, V. (2019). Nanofiltration of dye bath towards zero liquid discharge: A technical and economic evaluation. In Water scarcity and ways to reduce the impact (pp. 47–61). https://doi.org/10.1007/978-3-319-75199-3_3

    Chapter  Google Scholar 

  • Simonič, M. (2009). Efficiency of ultrafiltration for the pre-treatment of dye-bath effluents. Desalination, 245(1–3), 701–707. https://doi.org/10.1016/j.desal.2009.02.040

    Article  CAS  Google Scholar 

  • Stefanakis, A.I., 2018. Constructed wetlands for industrial wastewater treatment, Wiley-Blackwell.

  • Solmaz, S. K. A., Birgül, A., Üstün, G. E., & Yonar, T. (2006). Colour and COD removal from textile effluent by coagulation and advanced oxidation processes. Coloration Technology, 122(2), 102–109.

    CAS  Google Scholar 

  • Srivastava, A., Rani, R. M., Patle, D. S., & Kumar, S. (2022). Emerging bioremediation technologies for the treatment of textile wastewater containing synthetic dyes: A comprehensive review. Journal of Chemical Technology & Biotechnology, 97(1), 26–41.

    CAS  Google Scholar 

  • Sudhakar, M., Vijayalakshmi, P., Nilavunesan, D., Thiruvengadaravi, K. V., Baskaralingam, P., & Sivanesan, S. (2016). High Permeate Recovery for Concentrate Reduction by Integrated Membrane Process in Textile Effluent. Water Environ. Res. https://doi.org/10.2175/106143016x14609975747568

    Article  Google Scholar 

  • Subramani, A., & Jacangelo, J. G. (2014). Treatment technologies for reverse osmosis concentrate volume minimization: A review. Separation and Purification Technology, 122, 472–489.

    CAS  Google Scholar 

  • Tong, T., & Elimelech, M. (2016). The global rise of zero liquid discharge for wastewater management: Drivers, technologies, and future directions. Environmental Science & Technology, 50(13), 6846–6855.

    CAS  Google Scholar 

  • Tsai, J.-H., Macedonio, F., Drioli, E., Giorno, L., Chou, C.-Y., Hu, F.-C., Li, C.-L., Chuang, C.-J., & Tung, K.-L. (2017). Membrane-based zero liquid discharge: Myth or reality? Journal of the Taiwan Institute of Chemical Engineers, 80, 192–202.

    CAS  Google Scholar 

  • Üstün, G. E., Solmaz, S. K. A., & Birgül, A. (2007). Regeneration of industrial district wastewater using a combination of Fenton process and ion exchange-A case study. Resources, Conservation and Recycling, 52(2), 425–440. https://doi.org/10.1016/j.resconrec.2007.05.006

    Article  Google Scholar 

  • Vajnhandl, S., & Valh, J. V. (2014). The status of water reuse in European textile sector. Journal of Environmental Management, 141, 29–35. https://doi.org/10.1016/j.jenvman.2014.03.014

    Article  Google Scholar 

  • Valh, J Volmajer, Le Marechal, A. M., Vajnhandl, S., Jerič, T., & Šimon, E. (2011). Water in the textile industry. https://doi.org/10.1016/B978-0-444-53199-5.00102-0

  • Volmajer Valh, J., Majcen Le Marechal, A., Križanec, B., & Vajnhandl, S. (2012). The Applicability of an Advanced Oxidation Process for Textile Finishing WasteStreams & Fate of Persistent Organic Pollutants. International Journal of Environmental Research, 6(4), 863–874.

    Google Scholar 

  • van Houwelingen, G., Bond, R., Seacord, T., & Fessler, E. (2010). Experiences with pellet reactor softening as pretreatment for inland desalination in the USA. Desalination and Water Treatment, 13(1–3), 259–266.

    Google Scholar 

  • Vergili, I., Kaya, Y., Sen, U., Gönder, Z. B., & Aydiner, C. (2012). Techno-economic analysis of textile dye bath wastewater treatment by integrated membrane processes under the zero liquid discharge approach. Resources, Conservation and Recycling, 58, 25–35. https://doi.org/10.1016/j.resconrec.2011.10.005

    Article  Google Scholar 

  • Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154–168.

    CAS  Google Scholar 

  • Vigo, T. L. (2013). Textile processing and properties: Preparation, dyeing, finishing and performance. Elsevier.

    Google Scholar 

  • Vishnu, G., Palanisamy, S., & Joseph, K. (2008). Assessment of fieldscale zero liquid discharge treatment systems for recovery of water and salt from textile effluents. Journal of Cleaner Production, 16(10), 1081–1089.

    Google Scholar 

  • Vyas, J. K. (2016). For Challenges against implementation of ZLD in textile processing Industries and clusters in India. 1–28. https://www.ceeindia.org/file/ZLD-Concept-note.pdf

  • Wang, Y., Wang, H., Wang, X., **ao, Y., Zhou, Y., Su, X., Cai, J., & Sun, F. (2020). Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment: A critical review and update. Science of the Total Environment, 730, 139034.

    CAS  Google Scholar 

  • Yaqub, M., & Lee, W. (2019a). Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: A review. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.05.062

  • Yaqub, M., & Lee, W. (2019b). Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: A review. Science of the Total Environment, 681, 551–563.

    Google Scholar 

  • Yaqub, M., Nguyen, M. N., & Lee, W. (2022). Treating reverse osmosis concentrate to address scaling and fouling problems in zero-liquid discharge systems: A scientometric review of global trends. Science of The Total Environment, 844, 157081. https://doi.org/10.1016/j.scitotenv.2022.157081

    Article  CAS  Google Scholar 

  • Younos, T. (2005). Environmental issues of desalination. Journal of Contemporary Water Research & Education, 132(1), 11–18.

    Google Scholar 

  • Yusuf, R. O., & Sonibare, J. A. (2004). Characterization of textile industries’ effluents in Kaduna, Nigeria and pollution implications. Global Nest Journal, 6(1), 212–221. https://doi.org/10.30955/gnj.000284

    Article  Google Scholar 

  • Yumin, W., Lei, W., & Yanhong, F. (2016). Cost function for treating wastewater in rural regions. Desalin. Water Treat., 57, 17241–17246.

    Google Scholar 

  • Zhang, C., Shi, Y., Shi, L., Li, H., Li, R., Hong, S., Zhuo, S., Zhang, T., & Wang, P. (2021). Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge. Nat. Commun., 12, 1–10.

    Google Scholar 

  • Zero Discharge of Hazardous Chemicals ZG. (2015). ZDHC joint røadmap update 2015. ZDHC JOINT RØADMAP UPDATE, 16. September.

  • Zhang, Y. F., Liu, L., Du, J., Fu, R., Van der Bruggen, B., & Zhang, Y. (2017). Fracsis: Ion fractionation and metathesis by a NF-ED integrated system to improve water recovery. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2016.09.052

  • Zheng, L., Wang, X., & Wang, X. (2015). Reuse of reverse osmosis concentrate in textile and dyeing industry by combined process of persulfate oxidation and lime-soda softening. Journal of Cleaner Production, 108, 525–533.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant NRF-2021R1I1A1A01057831 from the Korean government (MSIT).

Author information

Authors and Affiliations

Authors

Contributions

MY: literature review, data analysis, and writing—original draft and funding; MDC: writing—rewriting and editing; MD: revision and editing; MK: revision and editing; SKB: revision and editing; and WL: revision and supervision

Corresponding authors

Correspondence to Muhammad Yaqub or Wontae Lee.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Studied textile wastewater treatment for zero liquid discharge (ZLD).

• Analyzed ZLD schemes and pre-treatment technologies to improve efficiency.

• Discussed pre-treatment technologies with their economic feasibility.

• Presented a techno-economic evaluation of ZLD to treat textile wastewater.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaqub, M., Celebi, M.D., Dilaver, M. et al. Treating Textile Wastewater to Achieve Zero Liquid Discharge: a Comprehensive Techno-economic Analysis. Water Air Soil Pollut 234, 651 (2023). https://doi.org/10.1007/s11270-023-06646-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06646-5

Keywords

Navigation