Log in

Denitrification Performance and Mechanism of Permeable Reactive Barrier Technology with a Sulfur Autotrophic Denitrification Composite Filler in Rare Earth Mine Engineering Applications

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sulfur autotrophic denitrification (SAD) is an economical, rapid, and efficient wastewater denitrification process. In this study, based on previous studies on SAD fillers, permeable reactive barrier technology with a SAD composite filler as a substrate was created to treat the groundwater of rare earth mines. The feasibility of this permeable reactive barrier technology with a SAD composite filler in rare earth mine engineering applications was demonstrated, with a maximum nitrate removal efficiency of 100%, an average nitrate removal efficiency of 92.68% on days 40–47 (the influent water was 100% rare earth mine groundwater), and a low accumulation of nitrite and ammonium. In addition, the reactor had a good removal effect on 16 rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu); except for that of Sc, the removal effects were over 98%. Moreover, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and Fourier transform infrared spectroscopy (FTIR) confirmed that extracellular polymeric substances (EPSs), especially polysaccharides, had a facilitative effect on the removal of rare earth elements. Furthermore, 16S rRNA gene sequencing demonstrated that Sulfurovum (18.11%), Ferritrophicum (15.55%), Thiobacillus (13.35%), and Sulfurimonas (8.51%) were the main denitrification genera of the reactor. Overall, the results of this study provide a case reference for permeable reactive barrier technologies with SAD composite fillers in rare earth mine engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Antwi, P., Zhang, D., Luo, W., **ao, L. W., Meng, J., Kabutey, F., Ayivi, F., & Li, J. (2019). Performance, microbial community evolution and neural network modeling of single-stage nitrogen removal by partial-nitritation/anammox process. Bioresource Technology, 284, 359–372.

    Article  CAS  Google Scholar 

  • Aquino, S., & Stuckey, D. (2004). Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds. Water Research, 38, 255–266.

    Article  CAS  Google Scholar 

  • Batchelor, B., & Lawrence, A. (1978). Autotrophic denitrification using elemental sulfur. Journal-Water Pollution Control Federation, 50, 1986–2001.

    CAS  Google Scholar 

  • Chen, D., Wang, D., **ao, Z., Wang, H., & Yang, K. (2018). Nitrate removal in a combined bioelectrochemical and sulfur autotrophic denitrification system under high nitrate concentration: effects of pH. Bioprocess and Biosystems Engineering, 41, 449–455.

    Article  CAS  Google Scholar 

  • Chen, X., Yang, L., Chen, F., Song, Q., Feng, C., Liu, X., & Li, M. (2022). High efficient bio-denitrification of nitrate contaminated water with low ammonium and sulfate production by a sulfur/pyrite-based bioreactor. Bioresource Technology, 346, 126669.

    Article  CAS  Google Scholar 

  • Chen, Z. (2011). Global rare earth resources and scenarios of future rare earth industry. Journal of Rare Earths, 29, 1–6.

    Article  Google Scholar 

  • Cheng, H., Tian, X., Li, C., Wang, S., Su, S., Wang, H., Zhang, B., Sharif, H., & Wang, A. (2017). Microbial photoelectrotrophic denitrification as a sustainable and efficient way for reducing nitrate to nitrogen. Environmental Science & Technology, 51, 12948–12955.

    Article  CAS  Google Scholar 

  • Comparato-Filho, O., Morais, F., Bhattacharjee, T., Castilho, M., & Raniero, L. (2019). Rapid identification of Paracoccidioides lutzii and P. Brasiliensis using Fourier transform infrared spectroscopy. Journal of Molecular Structure, 1177, 152–159.

    Article  CAS  Google Scholar 

  • Di-Capua, F., Pirozzi, F., Lens, P., & Esposito, G. (2019). Electron donors for autotrophic denitrification. Chemical Engineering Journal, 362, 922–937.

    Article  CAS  Google Scholar 

  • Fajardo, C., Mora, M., Fernandez, I., Mosquera-Corral, A., Campos, J., & Mendez, R. (2014). Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor. Chemosphere, 97, 10–15.

    Article  CAS  Google Scholar 

  • Fathali, D., Rashidi Mehrabadi, A., Mirabi, M., & Alimohammadi, M. (2019). Investigation on nitrogen removal performance of an enhanced post-anoxic membrane bioreactor using disintegrated sludge as a carbon source: An experimental study. Journal of Environmental Chemical Engineering, 7, 103445.

    Article  CAS  Google Scholar 

  • Fu, X., Hou, R., Yang, P., Qian, S., Feng, Z., Chen, Z., Wang, F., Yuan, R., Chen, H., & Zhou, B. (2022). Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. Science of The Total Environment, 817, 153061.

    Article  CAS  Google Scholar 

  • Fukushi, K., Chang, D., & Ghosh, S. (1996). Enhanced heavy metal uptake by activated sludge cultures grown in the presence of biopolymer stimulators. Water Science and Technology, 34, 267–272.

    Article  CAS  Google Scholar 

  • Gao, Y., Zhang, W., Gao, B., Jia, W., Miao, A., **ao, L., & Yang, L. (2018). Highly efficient removal of nitrogen and phosphorus in an electrolysis-integrated horizontal subsurface-flow constructed wetland amended with biochar. Water Research, 139, 301–310.

    Article  CAS  Google Scholar 

  • Hou, W., Liu, H., Wang, H., & Wu, F. (2018). Structure and patterns of the international rare earths trade: A complex network analysis. Resources Policy, 55, 133–142.

    Article  Google Scholar 

  • Hu, M., Wang, Y., Du, P., Shui, Y., Cai, A., Lv, C., Bao, Y., Li, Y., Li, S., & Zhang, P. (2019). Tracing the sources of nitrate in the rivers and lakes of the southern areas of the Tibetan Plateau using dual nitrate isotopes. Science of The Total Environment, 658, 132–140.

    Article  CAS  Google Scholar 

  • Huang, S., & Wu, D. (2020). Responses of anammox granular sludge to long-term rare earth element feeding: Lanthanum as a case. Sustainability, 12, 7887.

    Article  CAS  Google Scholar 

  • Kong, Z., Feng, C., Chen, N., Tong, S., Zhang, B., Hao, C., & Chen, K. (2014). A soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment. Bioresource Technology, 159, 272–279.

    Article  CAS  Google Scholar 

  • Kong, Z., Li, L., Feng, C., Dong, S., & Chen, N. (2016). Comparative investigation on integrated vertical-flow biofilters applying sulfur-based and pyrite-based autotrophic denitrification for domestic wastewater treatment. Bioresource Technology, 211, 125–135.

    Article  CAS  Google Scholar 

  • Li, L., Dong, Y., Qian, G., Hu, X., & Ye, L. (2018). Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen. Bioresource Technology, 258, 168–176.

    Article  CAS  Google Scholar 

  • Li, M., Duan, R., Hao, W., Li, Q., Arslan, M., Liu, P., Qi, X., Huang, X., El-Din, M., & Liang, P. (2020). High-rate nitrogen removal from carbon limited wastewater using sulfur-based constructed wetland: Impact of sulfur sources. Science of The Total Environment, 744, 140969.

    Article  CAS  Google Scholar 

  • Li, R., Feng, C., Hu, W., **, B., Chen, N., Zhao, B., Liu, Y., Hao, C., & Pu, J. (2016). Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation. Water Research, 89, 171–179.

    Article  CAS  Google Scholar 

  • Li, Y., Guo, J., Li, H., Song, Y., Chen, Z., Lu, C., Han, Y., & Hou, Y. (2020). Effect of dissolved oxygen on simultaneous removal of ammonia, nitrate and phosphorus via biological aerated filter with sulfur and pyrite as composite fillers. Bioresource Technology, 296, 122340.

    Article  CAS  Google Scholar 

  • Li, Y., Wang, Y., Wan, D., Li, B., Zhang, P., & Wang, H. (2020). Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: Performance and microbial community structure. Bioresource Technology, 300, 122682.

    Article  CAS  Google Scholar 

  • Liang, J., Chen, N., Tong, S., Liu, Y., & Feng, C. (2018). Sulfur autotrophic denitrification (SAD) driven by homogeneous composite particles containing CaCO3-type kitchen waste for groundwater remediation. Chemosphere, 212, 954–963.

    Article  CAS  Google Scholar 

  • Liu, C., Zhu, L., & Chen, L. (2020). Biofouling phenomenon of direct contact membrane distillation (DCMD) under two typical operating modes: Open-loop mode and closed-loop mode. Journal of Membrane Science, 601, 117952.

    Article  CAS  Google Scholar 

  • Liu, W., Wu, L., Zheng, M., Chao, Y., Zhao, C., Zhong, X., Ding, K., Huot, H., Zhang, M., Tang, Y., Li, C., & Qiu, R. (2019). Controls on rare-earth element transport in a river impacted by ion-adsorption rare-earth mining. Science of The Total Environment, 660, 697–704.

    Article  CAS  Google Scholar 

  • Ma, F., Chen, J., Wu, X., Zhou, Q., & Sun, S. (2016). Rapid discrimination of Panax notogeinseng of different grades by FT-IR and 2DCOS-IR. Journal of Molecular Structure, 1124, 131–137.

    Article  CAS  Google Scholar 

  • Oh, J., & Silverstein, J. (1999). Oxygen inhibition of activated sludge denitrification. Water Research, 33, 1925–1937.

    Article  CAS  Google Scholar 

  • Oh, S., Yoo, Y., Young, J., & Kim, I. (2001). Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions. Journal of Biotechnology, 92, 1–8.

    Article  CAS  Google Scholar 

  • Pang, Y., & Wang, J. (2020). Insight into the mechanism of chemoautotrophic denitrification using pyrite (FeS2) as electron donor. Bioresource Technology, 318, 124105.

    Article  CAS  Google Scholar 

  • Priester, J., Olson, S., Webb, S., Neu, M., Hersman, L., & Holden, P. (2006). Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Applied and Environmental Microbiology, 72, 1988–1996.

    Article  CAS  Google Scholar 

  • Rathnayake, R., Oshiki, M., Ishii, S., Segawa, T., Satoh, H., & Okabe, S. (2015). Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules. Bioresource Technology, 197, 15–22.

    Article  CAS  Google Scholar 

  • Reuben, S., Banas, K., Banas, A., & Swarup, S. (2014). Combination of synchrotron radiation-based Fourier transforms infrared microspectroscopy and confocal laser scanning microscopy to understand spatial heterogeneity in aquatic multispecies biofilms. Water Research, 64, 123–133.

    Article  CAS  Google Scholar 

  • Sabba, F., Picioreanu, C., Boltz, J., & Nerenberg, R. (2017). Predicting N2O emissions from nitrifying and denitrifying biofilms: A modeling study. Water Science and Technology, 75, 530–538.

    Article  CAS  Google Scholar 

  • Sahinkaya, E., Yurtsever, A., Aktaş, Ö., Ucar, D., & Wang, Z. (2015). Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor. Chemical Engineering Journal, 268, 180–186.

    Article  CAS  Google Scholar 

  • Santamaria, M., Diaz-Marrero, A., Hernandez, J., Gutierrez-Navarro, A., & Corzo, J. (2003). Effect of thorium on the growth and capsule morphology of Bradyrhizobium. Environmental Microbiology, 5, 916–924.

    Article  CAS  Google Scholar 

  • Su, H., Zhang, D., Antwi, P., **ao, L., Liu, Z., Deng, X., Asumadu-Sakyi, A., & Li, J. (2020). Effects of heavy rare earth element (yttrium) on partial-nitritation process, bacterial activity and structure of responsible microbial communities. Science of The Total Environment, 705, 135797.

    Article  CAS  Google Scholar 

  • Su, H., Zhang, D., Antwi, P., **ao, L., Luo, W., Deng, X., Lai, C., Liu, Z., Shi, M., & Manefield, M. (2021a). Unraveling the effects of light rare-earth element (Lanthanum (III)) on the efficacy of partial-nitritation process and its responsible functional genera. Chemical Engineering Journal, 408, 127311.

    Article  CAS  Google Scholar 

  • Su, H., Zhang, D., Antwi, P., **ao, L., Zhang, Z., Deng, X., Lai, C., Zhao, J., Deng, Y., Liu, Z., & Shi, M. (2021b). Adaptation, restoration and collapse of anammox process to La(III) stress: Performance, microbial community, metabolic function and network analysis. Bioresource Technology, 325, 124731.

    Article  CAS  Google Scholar 

  • Sun, J., Su, C., **e, Y., Huang, Z., Bao, J., Chen, M., & Lin, X. (2021). Rare earth mine wastewater treatment via modified constructed rapid infiltration system: Nitrogen removal performance and microbial community. Process Safety and Environmental Protection, 150, 223–232.

    Article  CAS  Google Scholar 

  • Sun, Y., Lv, D., Zhou, J., Zhou, X., Lou, Z., Baig, S., & Xu, X. (2017). Adsorption of mercury (II) from aqueous solutions using FeS and pyrite: A comparative study. Chemosphere, 185, 452–461.

    Article  CAS  Google Scholar 

  • Torrentó, C., Cama, J., Urmeneta, J., Otero, N., & Soler, A. (2010). Denitrification of groundwater with pyrite and Thiobacillus denitrificans. Chemical Geology, 278, 80–91.

    Article  Google Scholar 

  • Waite, D., Vanwonterghem, I., Rinke, C., Parks, D., Zhang, Y., Takai, K., Sievert, S., Simon, J., Campbell, B., Hanson, T., Woyke, T., Klotz, M., & Hugenholtz, P. (2017). Comparative genomic analysis of the class epsilonproteobacteria and proposed reclassification to epsilonbacteraeota (phyl. nov.). Frontiers in Microbiology, 8, 682.

    Article  Google Scholar 

  • Wang, Q., Rogers, M., Ng, S., & He, J. (2021). Fixed nitrogen removal mechanisms associated with sulfur cycling in tropical wetlands. Water Research, 189, 116619.

    Article  CAS  Google Scholar 

  • Wang, W., Wei, D., Li, F., Zhang, Y., & Li, R. (2019). Sulfur-siderite autotrophic denitrification system for simultaneous nitrate and phosphate removal: From feasibility to pilot experiments. Water Research, 160, 52–59.

    Article  CAS  Google Scholar 

  • WHO. (2011). Guideline for drinking water quality. Organization, World Health.

    Google Scholar 

  • **ang, L., Li, H., Zhou, B., Tian, Z., Song, Y., Yu, H., Sun, C., & Wang, S. (2016). Johannesburg-sulfur autotrophic denitrification system treatment of municipal wastewater with a low COD/TN ratio: Performance, material balance and bacterial community. Desalination and Water Treatment, 59, 99–113.

    Article  Google Scholar 

  • Xu, D., Ying, S., Wang, Y., Zheng, H., Zhang, M., Li, W., Chen, W., Pan, C., Kang, D., & Zheng, P. (2021). A novel SAD process: Match of anammox and denitrification. Water Research, 193, 116874.

    Article  CAS  Google Scholar 

  • Zhang, D., Su, H., Antwi, P., **ao, L., Liu, Z., & Li, J. (2019). High-rate partial-nitritation and efficient nitrifying bacteria enrichment/out-selection via pH-DO controls: Efficiency, kinetics, and microbial community dynamics. Science of The Total Environment, 692, 741–755.

    Article  CAS  Google Scholar 

  • Zhang, Y., **ong, Z., Yang, L., Ren, Z., Shao, P., Shi, H., **ao, X., Pavlostathis, S. G., Fang, L., & Luo, X. (2019). Successful isolation of a tolerant co-flocculating microalgae towards highly efficient nitrogen removal in harsh rare earth element tailings (REEs) wastewater. Water Research, 166, 115076.

    Article  CAS  Google Scholar 

  • Zhou, Y., He, Y., **ao, X., Liang, Z., Dai, J., Wang, M., & Chen, B. (2022). A novel and efficient strategy mediated with calcium carbonate-rich sources to remove ammonium sulfate from rare earth wastewater by heterotrophic Chlorella species. Bioresource Technology, 343, 125994.

    Article  CAS  Google Scholar 

  • Zou, Z., Yang, H., Zhang, S., Chi, W., Wang, X., & Liu, Z. (2022). Nitrogen removal performance and microbial community analysis of immobilized biological fillers in rare earth mine wastewater. Biochemical Engineering Journal, 186, 108559.

    Article  CAS  Google Scholar 

Download references

Funding

This research work was supported by the National Natural Science Foundation of China (No.41162007; No.41362011); Open Fund Project of State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (No.2020NRE18); Graduate Student Innovation Fund of Jiangxi Province (No.YC2021-S626).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bai Gao, Keng Xuan or Wenjie Ma.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1.

Supplementary data to this article can be found online at. (DOCX 40 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Gao, B., Xuan, K. et al. Denitrification Performance and Mechanism of Permeable Reactive Barrier Technology with a Sulfur Autotrophic Denitrification Composite Filler in Rare Earth Mine Engineering Applications. Water Air Soil Pollut 234, 76 (2023). https://doi.org/10.1007/s11270-023-06100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06100-6

Keywords

Navigation