Log in

A Review of Microplastics in Soil: Distribution Within Pedosphere Compartments, Environmental Fate, and Effects

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Microplastics (MPs) have been detected in various environmental media and have become a global hot environmental issue. However, the current distribution of MPs in soils in different regions, the migration and transformation of MPs, and their effects on soil ecology are still unclear. Therefore, this review summarizes the recent literature on soil MPs and gains the following key insights. The abundance of soil MPs is mainly affected by the land-use type and soil layer. The particle size range observed during the experiment also causes differences in the number of MPs. The migration of MPs is influenced by soil chemical (mineralogical composition, pH, and ionic strength), physical (porosity, water holding capacity, and texture) properties, and biological factors (soil fauna activity and plant root growth). When MPs degrade, the surface cracks, the specific surface area increases, and oxygen-containing functional groups such as carboxyl, aldehyde, and hydroxyl groups are produced. MPs reduce the stability of soil aggregates and change the community structure and functional gene abundance of microorganisms, affecting the organic carbon and nitrogen cycling processes. This review will help enhance the effective control of soil MPs and provide a theoretical reference to the mechanisms of their effects on soil carbon and nitrogen cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agarwal, S. (2020). Biodegradable polymers: Present opportunities and challenges in providing a microplastic-free environment. Macromolecular Chemistry and Physics, 221, 2000017.

    Article  CAS  Google Scholar 

  • Alimi, O. S., Budarz, J. F., Hernandez, L. M., & Tufenkji, N. (2018). Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52(4), 1704–1724.

    Article  CAS  Google Scholar 

  • Allen, S., Allen, D., Phoenix, V. R., Roux, G. L., Jimenez, P. D., Simonneau, A., Binet, S., & Galop, D. (2019). Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12, 339–344.

    Article  CAS  Google Scholar 

  • Alvim, C. B., Mendoza-Roca, J., & Bes-Piá, A. (2020). Wastewater treatment plant asmicroplastics release source-quantification and identification techniques. Journal of Environmental Management, 255, 109739.

    Article  CAS  Google Scholar 

  • Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62, 1596–1605.

    Article  CAS  Google Scholar 

  • Awet, T. T., Kohl, Y., Meier, F., Straskraba, S., Grun, A. L., Ruf, T., Jost, C., Drexel, R., Tunc, E., & Emmerling, C. (2018). Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environmental Sciences Europe, 30, 1–12.

    Article  CAS  Google Scholar 

  • Beriot, N., Peek, J., Zornoza, R., Geissen, V., & Huerta Lwanga, E. (2021). Low densitymicroplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in southeast Spain. Science of the Total Environment, 755, 142653.

    Article  CAS  Google Scholar 

  • Bi, M. H., He, Q., & Chen, Y. (2020). What roles are terrestrial plants playing in global microplastic cycling? Environmental Science & Technology, 54, 5325–5327.

    Article  CAS  Google Scholar 

  • Bläsing, M., & Amelung, W. (2018). Plastics in soil: Analytical methods and possible sources. Science of the Total Environment, 612, 422–435.

    Article  CAS  Google Scholar 

  • Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124, 3–22.

    Article  CAS  Google Scholar 

  • Burns, R. G., DeForest, J. L., Marxsen, J., Sinsabaugh, R. L., Stromberger, M. E., Wallenstein, M. D., Weintraub, M. N., & Zoppini, A. (2013). Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58, 216–234.

    Article  CAS  Google Scholar 

  • Cao, S., Zhou, Y. Z., Zhou, Y. Y., Zhou, X., & Zhou, W. J. (2021). Soil organic carbon and soil aggregate stability associated with aggregate fractions in a chronosequence of citrus orchards plantations. Journal of Environmental Management, 293, 112847.

    Article  CAS  Google Scholar 

  • Chai, B., Li, X., Liu, H., Lu, G., Dang, Z., & Yin, H. (2020). Bacterial communities on soil microplastic at Guiyu, an e-waste dismantling zone of China. Ecotoxicology and Environmental Safety, 195, 110521.

    Article  CAS  Google Scholar 

  • Chen, H., Wang, Y., Sun, X., Peng, Y., & **ao, L. (2020a). Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere, 243, 125271

    Article  CAS  Google Scholar 

  • Chen, Y., Leng, Y., Liu, X., & Wang, J. (2020b). Microplastic pollution in vegetable farmlands of suburb Wuhan. Environmental Pollution, 257, 113449.

    Article  CAS  Google Scholar 

  • Ciais, P., Sabine, C., Bala, G., Bopp, L., & Brovkin, V., et al. (2013). Thornton, in Climate Change 2013: The physical science basis. Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al. Eds. (Cambridge Univ. Press, 2014), 465–570.

  • Cole, M., Lindeque, P., Halsband, C., & Galloway, S. C. (2010). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62, 2588–2597.

    Article  CAS  Google Scholar 

  • Cooper, D. A., & Corcoran, P. L. (2010). Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai Hawaii. Marine Pollution Bulletin, 60, 650–654.

  • Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., & Geissen, V. (2019). Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment, 671, 411–420.

    Article  CAS  Google Scholar 

  • de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S., & Rillig, M. C. (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24, 1405–1416.

    Article  Google Scholar 

  • De Souza Machado, A. A., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., Becker, R., Görlich, A. S., & Rillig, M. C. (2019). Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 53(10), 6044–6052.

    Article  CAS  Google Scholar 

  • Dissanayake, P. D., Kim, S., Sarkar, B., Oleszczuk, P., Sang, M. K., Haque, M. N., Ahn, J. H., Bank, M. S., & Ok, Y. S. (2022). Effects of microplastics on the terrestrial environment: A critical review. Environmental Research, 209, 112734.

    Article  CAS  Google Scholar 

  • Evangeliou, N., Grythe, H., Klimont, Z., Heyes, C., & Stohl, A. (2020). Atmospheric transport is a major pathway of microplastics to remote regions. Nature Communications, 11, 3381.

    Article  CAS  Google Scholar 

  • Fan, P., Tan, W. B., & Yu, H. (2022). Effects of different concentrations and types of microplastics on bacteria and fungi in alkaline soil. Ecotoxicology and Environmental Safety, 229, 113045.

    Article  CAS  Google Scholar 

  • Fei, Y. F., Huang, S. Y., Zhang, H. B., Tong, Y. Z., Wen, D. S., **a, X. Y., Wang, H., Luo, Y. M., & Barceló, M. (2020). Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Science of the Total Environment, 707, 135634.

    Article  CAS  Google Scholar 

  • Fendall, L. S., & Sewell, M. A. (2009). Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin, 58, 1225–1228.

    Article  CAS  Google Scholar 

  • Fortuna, A. M., Marsh, T. L., Honeycutt, C. W., & Halteman, W. A. (2011). Use of primer selection and restriction enzymes to assess bacterial community diversity in an agricultural soil used for potato production via terminal restriction fragment length polymorphism. Applied Microbiology and Biotechnology, 91, 1193–1202.

    Article  CAS  Google Scholar 

  • Fuller, S., & Gautam, A. (2016). A procedure for measuring microplastics using pressurized fluid extraction. Environmental Science & Technology, 50, 5774–5780.

    Article  CAS  Google Scholar 

  • Gao, B., Yao, H. Y., Li, Y. Y., & Zhu, Y. Z. (2020). Microplastic addition alters the microbial community structure and stimulates soil carbon dioxide emissions in vegetable-Growing soil. Environmental Toxicology and Chemistry, 40, 352–365.

    Article  CAS  Google Scholar 

  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3, 1700782.

    Article  CAS  Google Scholar 

  • Gregory, M. R. (1996). Plastic ‘scrubbers’ in hand cleansers: A further (and minor) source for marine pollution identified. Marine Pollution Bulletin, 32, 867–871.

    Article  CAS  Google Scholar 

  • Guo, X., & Wang, J. (2019). The chemical behaviors of microplastics in marine environment: A review. Marine Pollution Bulletin, 142, 1–14.

    Article  CAS  Google Scholar 

  • Guo, J. J., Huang, X. P., **ang, L., Wang, Y. Z., Li, Y. W., Li, H., Cai, Y. Q., Mo, C. W., & Wang, M. H. (2020). Source, migration and toxicology of microplastics in soil. Environment International, 137, 105263.

    Article  CAS  Google Scholar 

  • Han, L. F., Chen, L. Y., Li, D., Ji, Y., Feng, Y. Y., & Yang, Z. F. (2022). Influence of polyethylene terephthalate microplastic and biochar co-existence on paddy soil bacterial community structure and greenhouse gas emission. Environmental Pollution, 292, 118386.

    Article  CAS  Google Scholar 

  • Heinze, W. M., Mitrano, D. M., Lahive, E., Koestel, J., & Cornelis, G. (2021). Nanoplastic transport in soil via bioturbation by Lumbricus terrestris. Environmental Science & Technology, 55, 16423–16433.

    Article  CAS  Google Scholar 

  • Hou, J., Xu, X. Y., Lan, L., Miao, L. Z., Xu, Y., You, G. X., & Liu, Z. L. (2020). Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors. Environmental Pollution, 263, 114499.

    Article  CAS  Google Scholar 

  • Hou, J. H., Xua, X. J., Yu, H., **, B. D., & Tan, W. B. (2021). Comparing the long-term responses of soil microbial structures and diversities to polyethylene microplastics in different aggregate fractions. Environment International, 149, 106398.

    Article  CAS  Google Scholar 

  • Huang, Y., Zhao, Y. R., Wang, J., Zhang, M. J., Jia, W. Q., & Qin, X. (2019). LDPE microplasticfilms alter microbial community composition and enzymatic activities in soil. Environmental Pollution, 254, 112983.

    Article  CAS  Google Scholar 

  • Huang, Y., Liu, Q., Jia, W. Q., Yan, C. R., & Wang, J. (2020). Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environmental Pollution, 260, 114096.

    Article  CAS  Google Scholar 

  • Huang, Y. M., He, T., Yan, M. T., Yang, L., Gong, H., Wang, W. J., Qing, X., & Wang, J. (2021). Atmospheric transport and deposition of microplastics in a subtropical urban environment. Journal of Hazardous Materials, 416, 126168.

    Article  CAS  Google Scholar 

  • Huerta, L. E., Gertsen, H., Gooren, H., Peters, P., Salanki, T., van der Ploeg, M., Besseling, E., Koelmans, A. A., & Geissen, V. (2016). Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50, 2685–2691.

    Article  CAS  Google Scholar 

  • Huerta, L. E., Gertsen, H., Gooren, H., Peters, P., Salanki, T., van der Ploeg, M., Besseling, E., Koelmans, A. A., & Geissen, V. (2017a). Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220, 523-531.

    Article  CAS  Google Scholar 

  • Huerta, L. E., Vega, J. M., Quej, V. K., Chi, J. A., del Cid, L. S., Chi, C., Segura, G. E., Gertsen. H., Salanki, T., van der Ploeg, M., Koelmans, A. A., & Geissen, V. (2017b). Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7, 14071-14078.

    Article  CAS  Google Scholar 

  • Iqbal, S., Xu, J. C., Allen, S. D., Khan, S., Nadir, S., Arif, M. S., & Yasmeen, T. (2020). Unraveling consequences of soil micro- and nano-plastic pollution on soil-plant system: Implications for nitrogen (N) cycling and soil microbial activity. Chemosphere, 260, 127578.

    Article  CAS  Google Scholar 

  • Kaiser, K., Wemheuer, B., Korolkow, V., Wemheuer, F., Nacke, H., Schöning, I., Schrumpf, M., & Daniel, R. (2016). Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Scientific Reports, 6, 33696.

    Article  CAS  Google Scholar 

  • Kedzierski, M., D’Almeida, M., Magueresse, A., Le Grand, A., Duval, H., César, G., Sire, O., Bruzaud, S., & Le Tilly, V. (2018). Threat of plastic ageing in marine environment Adsorption/desorption of Micropollutants. Marine Pollution Bulletin, 127, 684–694.

    Article  CAS  Google Scholar 

  • Kim, S. W., & An, Y. J. (2019). Soil microplastics inhibit the movement of springtail species. Environment International, 126, 699–706.

    Article  Google Scholar 

  • Kim, S. K., Kim, J. S., Lee, H., & Lee, H. J. (2021a). Abundance and characteristics of microplastics in soils with different agricultural practices: Importance of sources with internal origin and environmental fate. Journal of Hazardous Materials, 403, 123997.

    Article  CAS  Google Scholar 

  • Kim, S. W., Jeong, A. W., & An, Y. J. (2021b). Microplastics disrupt accurate soil organic carbon measurement based on chemical oxidation method. Chemosphere, 276, 130178.

    Article  CAS  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1–22.

    Article  CAS  Google Scholar 

  • Lang, M. F., Wang, G. Y., Yang, Y. Y., Zhu, W. M., Zhang, Y. M., Ouyang, Z. Z., & Guo, X. T. (2022). The occurrence and effect of altitude on microplastics distribution in agricultural soils of Qinghai province, northwest China. Science of the Total Environment, 810, 152174.

    Article  CAS  Google Scholar 

  • Lehmann, A., Zheng, W., Ryo, M., Soutschek, K., Roy, J., Rongstock, R., Maaß, S., & Rillig, M. C. (2020). Fungal traits important for soil aggregation. Frontiers in Microbiology, 10, 2904.

    Article  Google Scholar 

  • Lehmann, A., Leifheit, E. F., Gerdawischke, M., & Rillig, M. C. (2021). Microplastics have shape- and polymer-dependent effects on soil aggregation and organic matter loss–An experimental and meta-analytical approach. Microplastics and Nanoplastics, 1(1), 7.

    Article  Google Scholar 

  • Li, X., Chen, L., Mei, Q., Dong, B., Dai, X., Ding, G., & Zeng, E. (2018). Microplastics in sewage sludge from the wastewater treatment plants in China. Water Research, 142(1), 75–85.

    CAS  Google Scholar 

  • Li, M., Zhang, X. W., Yi, K. X., He, L., Han, P., & Tong, M. P. (2021). Transport and deposition of microplastic particles in saturated porous media: Co-effects of clay particles and natural organic matter. Environmental Pollution, 287, 117585.

    Article  CAS  Google Scholar 

  • Li, H. X., Liu, L., Xu, Y., & Zhang, J. Y. (2022). Microplastic effects on soil system parameters: A meta-analysis study. Environmental Science and Pollution Research, 29, 11027–11038.

    Article  CAS  Google Scholar 

  • Liu, H. F., Yang, X. M., Liu, G. B., Liang, C. T., Xue, S., Chen, H., Ritsema, C. J., & Geissen, V. (2017). Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185, 907–917.

    Article  CAS  Google Scholar 

  • Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., Lv, W., Zhou, W., Cao, C., Shi, H., Yang, X., & He, D. (2018). Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 242, 855–862.

    Article  CAS  Google Scholar 

  • Liu, P., Qian, L., Wang, H., Zhan, X., Lu, K., Gu, C., & Gao, S. (2019). New insights into the aging behavior of microplastics accelerated by advanced oxidation processes. Environmental Science & Technology, 53, 3579–3588.

    Article  CAS  Google Scholar 

  • Luo, Y. Y., Zhang, Y. Y., Xu, Y. B., Guo, X. T., & Zhu, L. Y. (2020). Distribution characteristics and mechanism of microplastics mediated by soil physicochemical properties. Science of the Total Environment, 726, 138389.

    Article  CAS  Google Scholar 

  • Maaß, S., Daphi, D., Lehmann, A., & Rillig, M. C. (2017). Transport of microplastics by two collembolan species. Environmental Pollution, 225, 456–459.

    Article  CAS  Google Scholar 

  • Maity, S., & Pramanick, K. (2020). Perspectives and challenges of micro/nanoplasticsinduced toxicity with special reference to phytotoxicity. Global Change Biology, 26, 3241–3250.

    Article  Google Scholar 

  • Mbachu, O., Jenkins, G., Kaparaju, P., & Pratt, C. (2021). The rise of artificial soil carbon inputs: Reviewing microplastic pollution effects in the soil environment. Science of the Total Environment, 780, 146569.

    Article  CAS  Google Scholar 

  • Meng, F. R., Yang, X. M., Riksen, M., & Geissen, V. (2022). Effect of different polymers of microplastics on soil organic carbon and nitrogen–A mesocosm experiment. Environmental Research, 204, 111938.

    Article  CAS  Google Scholar 

  • Mumme, S., Jochum, M., Brose, U., Haneda, N. F., & Barnes, A. D. (2015). Functional diversity and stability of litter-invertebrate communities following land-use change in Sumatra, Indonesia. Biological Conservation, 191, 750–758.

    Article  Google Scholar 

  • Munkhtsetseg, E., Shinoda, M., Gillies, J. A., Kimura, R., King, J., & Nikolich, G. (2016). Relationships between soil moisture and dust emissions in a bare sandy soil of mongolia. Particuology, 28, 131–137.

    Article  Google Scholar 

  • Ng, E. L., Huerta, L. E., Eldridge, S. M., Johnston, P., Hu, H. W., Geissen, V., & Chen, D. (2019). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377–1388.

    Article  CAS  Google Scholar 

  • Nizzetto, L., Futter, M., & Langaas, S. (2016). Are agricultural soils dumps for microplastics of urban origin. Environmental Science & Technology, 50(20), 10777–10779.

    Article  CAS  Google Scholar 

  • Re, V. (2019). Shedding light on the invisible: Addressing the potential for groundwater contamination by plastic microfibers. Hydrogeology Journal, 27, 2719–2727.

    Article  Google Scholar 

  • Ren, X. W., Tang, J. C., Liu, X. M., & Liu, Q. L. (2020). Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environmental Pollution, 256, 113347.

    Article  CAS  Google Scholar 

  • Ren, Z. F., Gui, X. Y., Xu, X. Y., Zhao, L., Qiu, H., & Cao, X. D. (2021). Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants-A critical review. Journal of Hazardous Materials, 419, 126455.

    Article  CAS  Google Scholar 

  • Rillig, M. C. (2012). Microplastic in terrestrial ecosystems and the soil? Environmental Science & Technology, 46, 6453–6454.

    Article  CAS  Google Scholar 

  • Rillig, M. C. (2018). Microplastic disguising as soil carbon storage. Environmental Science & Technology, 52, 6079–6080.

    Article  CAS  Google Scholar 

  • Rillig, M. C., Ziersch, L., & Hempel, S. (2017). Microplastic transport in soil by earthworms. Scientific Reports, 7(1), 1362.

    Article  CAS  Google Scholar 

  • Rillig, M. C., Leifheit, E., & Lehmann, J. (2021). Microplastic effects on carbon cycling processes in soils. PLOS Biology, 19, e3001130.

    Article  CAS  Google Scholar 

  • Rochman, C. M., Hoh, E., Hentschel, B. T., & Kaye, S. (2013). Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris. Environmental Science & Technology, 47, 1646–1654.

    CAS  Google Scholar 

  • Rodriguez-Seijo, A., Lourenço, J., Rocha-Santos, T. A. P., Costa, J. D., Duarte, A. C., Vala, H., & Pereira, R. (2017). Histopathological and molecular effects of microplastics in Eisenia andrei Bouche. Environmental Pollution, 220, 495–503.

    Article  CAS  Google Scholar 

  • Rong, L. L., Zhao, L. F., Zhao, L. C., Cheng, Z. P., Yao, Y. M., Yuan, C. L., Wang, L., & Sun, H. W. (2021). LDPE microplastics affect soil microbial communities and nitrogen cycling. Science of the Total Environment, 773, 145640.

    Article  CAS  Google Scholar 

  • Rummel, C. D., Jahnke, A., Gorokhova, E., Kuhnel, D., & Schmitt-Jansen, M. (2017). Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environmental Science & Technology Letters, 4, 258–267.

    Article  CAS  Google Scholar 

  • Scheurer, M., & Bigalke, M. (2018). Microplastics in Swiss floodplain soils. Environmental Science & Technology, 52(6), 3591–3598.

    Article  CAS  Google Scholar 

  • Seeley, M. E., Song, B., Passie, R., & Hale, R. C. (2020). Microplastics affect sedimentary microbial communities and nitrogen cycling. Nature Communications, 11, 2372.

    Article  CAS  Google Scholar 

  • Song, Y. K., Hong, S. H., Eo, S., Han, G. M., & Shim, W. J. (2020). Rapid production of micro- and nanoplastics byfragmentation of expanded polystyrene exposed to sunlight. Environmental Science & Technology, 54, 11191–11200.

    Article  CAS  Google Scholar 

  • Sun, Y. Z., Duan, C. X., Cao, N., Ding, C. F., Huang, E., & Wang, J. (2022). Biodegradable and conventional microplastics exhibit distinct microbiome, functionality, and metabolome changes in soil. Journal of Hazardous Materials, 424, 127282.

    Article  CAS  Google Scholar 

  • Tan, M. M., Liu, L. F., Zhang, M. G., Liu, Y. L., & Li, C. L. (2021). Effects of solution chemistry and humic acid on the transport of polystyrene microplastics in manganese oxides coated sand. Journal of Hazardous Materials, 413, 125410.

    Article  CAS  Google Scholar 

  • Teuten, E. L., Saquing, J. M., Knappe, D. R., Barlaz, M. A., Jonsson, S., Bjorn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., & Yamashita, R. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society b: Biological Sciences, 364, 2027–2045.

    Article  CAS  Google Scholar 

  • Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., McGonigle, D., & Russell, A. E. (2004). Lost at sea: Where is all the plastic? Science, 304, 838.

    Article  CAS  Google Scholar 

  • Varotsos, C. A., & Cracknell, A. P. (2020). Remote sensing letters contribution to the success of the Sustainable Development Goals-UN 2030 agenda. Remote Sensing Letters, 11(8), 715–719.

    Article  Google Scholar 

  • Wan, Y., Wu, C., Xue, Q., & Hui, X. (2019). Effects of plastic contamination on water evaporation and desiccation cracking in soil. Science of the Total Environment, 654, 576–582.

    Article  CAS  Google Scholar 

  • Wang, Q., Zhang, Y., Wang, J., Wang, Y., Meng, G., & Chen, Y. (2020a). The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. Journal of Environmental Sciences, 87, 272-280.

  • Wang, J., Huang, M. K., Wang, Q., Sun, Y. Z., Zhao, Y. R., & Huang, Y. (2020b). LDPE microplastics significantly alter the temporal turnover of soil microbial communities. Science of the Total Environment, 726, 138682.

  • Wang, J., Li, J. Y., Liu, S. T., Li, H. Y., Chen, X. C., Peng, C., Zhang, P. P., & Liu, X. H. (2021). Distinct microplastic distributions in soils of different land-use patterns: A case study of Chinese farmlands. Environmental Pollution, 269, 116199.

    Article  CAS  Google Scholar 

  • Wu, X. L., Lyu, X. Y., Li, Z. Y., Gao, B., Zeng, X. K., Wu, J. C., & Sun, Y. Y. (2020). Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type. Science of the Total Environment, 707, 136065.

    Article  CAS  Google Scholar 

  • **ao, M. L., Ding, J. N., Luo, Y., Zhang, H. Q., Yu, Y. X., Yao, H. Y., Zhu, Z. K., Chadwicka, D. R., Jones, D., Chen, J. P., & Ge, T. D. (2022). Microplastics shape microbial communities affecting soil organic matter decomposition in paddy soil. Journal of Hazardous Materials, 431, 128589.

    Article  CAS  Google Scholar 

  • Xu, G. R., Yang, L., Xu, L., & Yang, J. (2022). Soil microplastic pollution under different land uses in tropics, southwestern China. Chemosphere, 289, 133176.

    Article  CAS  Google Scholar 

  • Yang, X. M., BentoCélia, P. M., Hao, C., Zhang, H. M., Xue, S., Lwanga, E. H., Zomer, P., Ritsema, C. J., & Geissen, V. (2018). Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil. Environmental Pollution, 242, 338–347.

    Article  CAS  Google Scholar 

  • Yu, L., Zhang, J. D., Liu, Y., Chen, L. Y., Tao, S., & Liu, W. X. (2021). Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China. Science of the Total Environment, 756, 143860.

    Article  CAS  Google Scholar 

  • Yu, Y. X., Li, X., Feng, Z. Y., **ao, M. X., Ge, T. D., Li, Y. Y., & Yao, H. Y. (2022). Polyethylene microplastics alter the microbial functional gene abundances and increase nitrous oxide emissions from paddy soils. Journal of Hazardous Materials, 432, 128721.

    Article  CAS  Google Scholar 

  • Zang, H. D., Zhou, J., Marshall, M. R., Chadwick, D. R., Wen, Y., & Jones, D. L. (2020). Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system? Soil Biology and Biochemistry, 148, 107926.

    Article  CAS  Google Scholar 

  • Zhang, G. S., & Liu, Y. F. (2018). The distribution of microplastics in soil aggregate fractions in southwestern China. Science of the Total Environment, 642, 12–20.

    Article  CAS  Google Scholar 

  • Zhang, G. S., Zhang, F. X., & Li, X. T. (2019). Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Science of the Total Environment, 670, 1–7.

    Article  CAS  Google Scholar 

  • Zhang, Y., Li, P., Liu, X., **ao, L., Shi, P., & Zhao, B. (2019). Effects of farmland conversion on the stoichiometry of carbon, nitrogen, and phosphorus in soil aggregates on the Loess Plateau of China. Geoderma, 351, 188–196.

    Article  CAS  Google Scholar 

  • Zhang, Y. L., Gao, T. G., Kang, S. C., Allen, S., Luo, X., & Allen, D. (2021). Microplastics in glaciers of the Tibetan Plateau: Evidence for the long-range transport of microplastics. Science of the Total Environment, 758, 143634.

    Article  CAS  Google Scholar 

  • Zhang, H. X., Huang, Y. M., An S. S., Li, H. H., Deng, X. Q., Wang, P., & Fan, M. Y. (2022a). Land-use patterns determine the distribution of soil microplastics in typical agricultural areas on the eastern Qinghai-Tibetan Plateau. Journal of Hazardous Materials, 426, 127806.

    Article  CAS  Google Scholar 

  • Zhang, Y. X., Li, X., **ao, M., Feng, Z. Y., Yu, Y. X., & Yao, H. Y. (2022b). Effects of microplastics on soil carbon dioxide emissions and the microbial functional genes involved in organic carbon decomposition in agricultural soil. Science of the Total Environment, 806, 150714.

    Article  CAS  Google Scholar 

  • Zhao, J. M., Ran, W., Teng, J., Liu, Y. L., Liu, H., Yin, X. N., Cao, R. W., & Wang, Q. (2018). Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea. China. Science of the Total Environment, 640/641, 637–645.

    Article  CAS  Google Scholar 

  • Zhao, T., Lozano, Y. M., & Rillig, M. C. (2021). Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer pattern, and exposure time. Frontiers in Environmental Science, 9, 675803.

    Article  Google Scholar 

  • Zhou, Y. F., Liu, X. N., & Wang, J. (2019). Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China. Science of the Total Environment, 694, 133798.

    Article  CAS  Google Scholar 

  • Zhou, J., Wen, Y., Marshall, M.R., Zhao, J., Gui, H., Yang, Y.D., Zeng, Z.H., Jones, D.L., & Zang, H.D. (2021a). Microplastics as an emerging threat to plant and soil health in agroecosystems. Science of the Total Environment, 787, 147444.

    Article  CAS  Google Scholar 

  • Zhou, J., Gui, H., Banfield, C. C., Wen, Y., Zang, H. D., Dippold, M. A., Charlton, A., & Jones, D. L. (2021b). The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function. Soil Biology and Biochemistry, 156, 108211.

    Article  CAS  Google Scholar 

  • Zhu, D., Chen, Q. L., An, X. L., Yang, X. R., Christie, P., Ke, X., Wu, L. H., & Zhu, Y. G. (2018). Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biology and Biochemistry, 116, 302–310.

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP), Grant No. 2019QZKK0603.

Author information

Authors and Affiliations

Authors

Contributions

Haixin Zhang, writing—original draft, investigation, and software. Yimei Huang, writing—review and editing, funding, and project management. Shaoshan An and Zhaolong Zhu, supervision and conceptualization.

Corresponding author

Correspondence to Yimei Huang.

Ethics declarations

Consent to Participate and Publish

All co-authors have seen and approved the manuscript and have agreed to its submissions for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Huang, Y., An, S. et al. A Review of Microplastics in Soil: Distribution Within Pedosphere Compartments, Environmental Fate, and Effects. Water Air Soil Pollut 233, 380 (2022). https://doi.org/10.1007/s11270-022-05837-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05837-w

Keywords

Navigation