Log in

A Continuum Mechanical Approach to Geodesics in Shape Space

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this paper concepts from continuum mechanics are used to define geodesic paths in the space of shapes, where shapes are implicitly described as boundary contours of objects. The proposed shape metric is derived from a continuum mechanical notion of viscous dissipation. A geodesic path is defined as the family of shapes such that the total amount of viscous dissipation caused by an optimal material transport along the path is minimized. The approach can easily be generalized to shapes given as segment contours of multi-labeled images and to geodesic paths between partially occluded objects. The proposed computational framework for finding such a minimizer is based on the time discretization of a geodesic path as a sequence of pairwise matching problems, which is strictly invariant with respect to rigid body motions and ensures a 1–1 correspondence along the induced flow in shape space. When decreasing the time step size, the proposed model leads to the minimization of the actual geodesic length, where the Hessian of the pairwise matching energy reflects the chosen Riemannian metric on the underlying shape space. If the constraint of pairwise shape correspondence is replaced by the volume of the shape mismatch as a penalty functional, one obtains for decreasing time step size an optical flow term controlling the transport of the shape by the underlying motion field. The method is implemented via a level set representation of shapes, and a finite element approximation is employed as spatial discretization both for the pairwise matching deformations and for the level set representations. The numerical relaxation of the energy is performed via an efficient multi-scale procedure in space and time. Various examples for 2D and 3D shapes underline the effectiveness and robustness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R. A. (1975). Sobolev spaces. New York: Academic Press.

    MATH  Google Scholar 

  • Ball, J. M. (1977). Convexity conditions and existence theorems in nonlinear elasticity. Archive of Rational Mechanics and Analysis, 63, 337–403.

    Article  MATH  Google Scholar 

  • Ball, J. M. (1981). Global invertibility of Sobolev functions and the interpenetration of matter. Proceedings of the Royal Society of Edinburgh A, 88, 315–328.

    MATH  Google Scholar 

  • Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric map**s via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2), 139–157.

    Article  Google Scholar 

  • Black, M. J., & Anandan, P. (1993). A framework for the robust estimation of optical flow. In Fourth international conference on computer vision, ICCV-93 (pp. 231–236).

    Google Scholar 

  • Bornemann, F. A., & Deuflhard, P. (1996). The cascadic multigrid method for elliptic problems. Numerische Mathematik, 75(2), 135–152.

    Article  MATH  MathSciNet  Google Scholar 

  • Bronstein, A., Bronstein, M., & Kimmel, R. (2008). Monographs in computer science. Numerical geometry of non-rigid shapes. Berlin: Springer.

    MATH  Google Scholar 

  • Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22(1), 61–79.

    Article  MATH  Google Scholar 

  • Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  • Charpiat, G., Faugeras, O., & Keriven, R. (2005). Approximations of shape metrics and application to shape war** and empirical shape statistics. Foundations of Computational Mathematics, 5(1), 1–58.

    Article  MATH  MathSciNet  Google Scholar 

  • Charpiat, G., Maurel, P., Pons, J.-P., Keriven, R., & Faugeras, O. (2007). Generalized gradients: priors on minimization flows. International Journal of Computer Vision, 73(3), 325–344.

    Article  Google Scholar 

  • Chipot, M., & Evans, L. C. (1986). Linearization at infinity and Lipschitz estimates in the calculus of variations. Proceedings of the Royal Society of Edinburgh A, 102(3–4), 291–303.

    MATH  MathSciNet  Google Scholar 

  • Chorin, A. J., & Marsden, J. E. (1990). Texts in applied mathematics: Vol. 4. A mathematical introduction to fluid mechanics. Berlin: Springer.

    MATH  Google Scholar 

  • Ciarlet, P. G. (1988) Three-dimensional elasticity. Amsterdam: Elsevier

    MATH  Google Scholar 

  • Delfour, M. C., & Zolésio, J. P. (2001). Adv. des. control: Vol. 4. Geometries and shapes: analysis, differential calculus and optimization. Philadelphia: SIAM.

    MATH  Google Scholar 

  • do Carmo, M. P. (1992). Riemannian geometry. Boston: Birkhäuser.

    MATH  Google Scholar 

  • Droske, M., & Rumpf, M. (2007). Multi scale joint segmentation and registration of image morphology. IEEE Transactions on Pattern Analysis, 29(12), 2181–2194.

    Article  Google Scholar 

  • Duci, A., Yezzi, A. J., Mitter, S. K., & Soatto, S. (2006). Region matching with missing parts. Image and Vision Computing, 24, 271–277.

    Article  Google Scholar 

  • Dupuis, D., Grenander, U., & Miller, M. I. (1998). Variational problems on flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics, 56, 587–600.

    MATH  MathSciNet  Google Scholar 

  • Eckstein, I., Pons, J., Tong, Y., Kuo, C., & Desbrun, M. (2007). Generalized surface flows for mesh processing. In Eurographics symposium on geometry processing.

    Google Scholar 

  • Fletcher, P., & Whitaker, R. (2006). Riemannian metrics on the space of solid shapes. In MICCAI 2006: Med Image Comput Assist Interv.

    Google Scholar 

  • Fuchs, M., Jüttler, B., Scherzer, O., & Yang, H. Shape metrics based on elastic deformations. Journal of Mathematical Imaging and Vision, to appear, 2009.

  • Glaunès, J., Qiu, A., Miller, M. I., & Younes, L. (2008). Large deformation diffeomorphic metric curve map**. International Journal of Computer Vision, 80(3), 317–336.

    Article  Google Scholar 

  • Gromov, M. (1999). Progress in mathematics: Vol. 152. Metric structures for Riemannian and non-Riemannian spaces. Boston: Birkhäuser.

    MATH  Google Scholar 

  • Kapur, T., Yezzi, L., & Zöllei, L. (2001). A variational framework for joint segmentation and registration. In IEEE CVPR—MMBIA (pp. 44–51).

    Google Scholar 

  • Kendall, D. G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16, 81–121.

    Article  MATH  MathSciNet  Google Scholar 

  • Kilian, M., Mitra, N. J., & Pottmann, H. (2007). Geometric modeling in shape space. ACM Transactions on Graphics, 26, 64-1–64-8.

    Article  Google Scholar 

  • Klassen, E., Srivastava, A., Mio, W., & Joshi, S. (2004). Analysis of planar shapes using geodesic paths on shape spaces. IEEE Transactions on Pattern Analysis, 26(3), 372–383.

    Article  Google Scholar 

  • Liu, X., Shi, Y., Dinov, I., & Mio, W. (2010). A computational model of multidimensional shape. doi:10.1007/s11263-010-0323-0

  • Luckhaus, S., & Sturzenhecker, T. (1995). Implicit time discretization for the mean curvature flow equation. Calculus of Variations, 3, 253–271.

    MATH  MathSciNet  Google Scholar 

  • Manay, S., Cremers, D., Hong, B.-W., Yezzi, A. J., & Soatto, S. (2006). Integral invariants for shape matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1602–1618.

    Article  Google Scholar 

  • Mémoli, F., & Sapiro, G. (2005). A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics, 5, 313–347.

    Article  MATH  MathSciNet  Google Scholar 

  • Michor, P. W., & Mumford, D. (2006). Riemannian geometries on spaces of plane curves. Journal of the European Mathematical Society, 8, 1–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Michor, P. W., Mumford, D., Shah, J., & Younes, L. (2008). A metric on shape space with explicit geodesics. Rendiconti Lincei. Matematica Applicazioni, 9, 25–57.

    MathSciNet  Google Scholar 

  • Miller, M. I., & Younes, L. (2001). Group actions, homeomorphisms and matching: a general framework. International Journal of Computer Vision, 41(1–2), 61–84.

    Article  MATH  Google Scholar 

  • Miller, M. I., Trouvé, A., & Younes, L. (2002). On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomedical Engineering, 4, 375–405.

    Article  Google Scholar 

  • Nečas, J., & Šilhavý, M. (1991). Multipolar viscous fluids. Quarterly of Applied Mathematics, 49(2), 247–265.

    MATH  MathSciNet  Google Scholar 

  • Schmidt, F., Clausen, M., & Cremers, D. (2006). Shape matching by variational computation of geodesics on a manifold. Lecture notes in computer science: Vol. 4174. Pattern recognition (pp. 142–151).

    Chapter  Google Scholar 

  • Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The Princeton shape benchmark. In Proceedings of the shape modeling international 2004, Genova (pp. 167–178).

    Chapter  Google Scholar 

  • Sundaramoorthi, G., Yezzi, A., & Mennucci, A. (2007). Sobolev active contours. International Journal of Computer Vision, 73(3), 345–366.

    Article  Google Scholar 

  • Trouvé, A., & Younes, L. (2005). Metamorphoses through Lie group action. Foundations of Computational Mathematics, 5(2), 173–198.

    Article  MATH  MathSciNet  Google Scholar 

  • Truesdell, C., & Noll, W. (2004). The non-linear field theories of mechanics. Berlin: Springer.

    Google Scholar 

  • Vaillant, M., & Glaunès, J. (2005). Surface matching via currents. In Lecture notes in computer science: Vol. 3565. IPMI 2005: Information processing in medical imaging (pp. 381–392).

    Chapter  Google Scholar 

  • Vese, L., & Chan, T. F. (2002). A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 50(3), 271–293.

    Article  MATH  Google Scholar 

  • Yezzi, A. J., & Mennucci, A. (2005). Conformal metrics and true “gradient flows” for curves. In ICCV 2005: Proceedings of the 10th IEEE international conference on computer vision (pp. 913–919).

    Google Scholar 

  • Younes, L. (1998). Computable elastic distances between shapes. SIAM Journal on Applied Mathematics, 58, 565–586.

    Article  MATH  MathSciNet  Google Scholar 

  • Younes, L., Qiu, A., Winslow, R. L., & Miller, M. I. (2008). Transport of relational structures in groups of diffeomorphisms. Journal of Mathematical Imaging and Vision, 32(1), 41–56.

    Article  MathSciNet  Google Scholar 

  • Zhao, H.-K., Chan, T., Merriman, B., & Osher, S. (1996). A variational level set approach to multiphase motion. Journal of Computational Physics, 127, 179–195.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu, L., Yang, Y., Haker, S., & Tannenbaum, A. (2007). An image morphing technique based on optimal mass preserving map**. IEEE Transactions on Image Processing, 16(6), 1481–1495.

    Article  MathSciNet  Google Scholar 

  • Zolésio, J.-P. (2004). Shape topology by tube geodesic. In IFIP conference on system modeling and optimization No 21 (pp. 185–204).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Wirth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirth, B., Bar, L., Rumpf, M. et al. A Continuum Mechanical Approach to Geodesics in Shape Space. Int J Comput Vis 93, 293–318 (2011). https://doi.org/10.1007/s11263-010-0416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0416-9

Keywords

Navigation