Log in

The molecular diversity and evolution of Rice tungro bacilliform virus from Indian perspective

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Rice tungro disease is caused by a combination of two viruses: Rice tungro spherical virus and Rice tungro bacilliform virus (RTBV). This study was performed with the objective to decipher the molecular variability and evolution of RTBV isolates present in the tungro-affected states of Indian subcontinent. Phylogenetic analysis based on ORF-I, ORF-II, and ORF-IV sequences showed distinct divergence of Indian RTBV isolates into two groups; one consisted isolates from Hyderabad (Andhra Pradesh), Cuttack (Orissa), and Puducherry and another from West Bengal, Chinsura West Bengal, and Kanyakumari (Tamil Nadu). The results obtained from phylogenetic analysis were further supported with the single nucleotide polymorphisms (SNPs), insertion and deletion (INDELs) and evolutionary distance analysis. In addition, sequence difference count matrix revealed a maximum of 56 (ORF-I), 13 (ORF-II) and 73 (ORF-IV) nucleotides differences among all the Indian RTBV isolates taken in this study. However, at the protein level these differences were not significant as revealed by K a/K s ratio calculation. Sequence identity at nucleotide and amino acid level was 92–100 % (ORF-I), 96–100 % (ORF-II), 94–100 % (ORF-IV) and 86–100 % (ORF-I), 98–100 % (ORF-II) and 95–100 % (ORF-IV), respectively, among Indian isolates of RTBV. The divergence of RTBV isolates into two independent clusters of Indian and non-Indian was shown with the help of the data obtained from phylogeny, SNPs, and INDELs, evolutionary distance analysis, and conserved motifs analysis. The important role of ORF-I and ORF-IV in RTBV diversification and adaptation to different rice growing regions is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Muralidharan, D. Krishnaveni, N.V.L. Rajarajeshwari, A.S.R. Prasad, Curr. Sci. 85, 1143 (2003)

    Google Scholar 

  2. R. Hull, A. Geering, G. Harper, B.E. Lockhart, J.E. Scholez, in Virus taxonomy eighth report of the international committee on taxonomy of virus, ed. by C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L. Ball (Elsevier/Academic Press, London, 2005), pp. 385–396

    Google Scholar 

  3. R.D. Qu, M. Bhattacharyya, G.S. Laco, A. de Kochko, B.L. Rao, M.B. Kaniewska, J.S. Elmer, D.E. Rochester, C.E. Smith, R.N. Beachy, Virology 185, 354–364 (1991)

    Article  PubMed  CAS  Google Scholar 

  4. Y. Bao, R. Hull, J. Gen, Virology 73, 1297–1301 (1992)

    CAS  Google Scholar 

  5. E. Jacquot, M. Keller, P. Yot, Virology 239, 352–359 (1997)

    Article  PubMed  CAS  Google Scholar 

  6. E. Herzog, O. Guerra-Peraza, T. Hohn, J. Virol. 74, 2073–2083 (2000)

    Article  PubMed  CAS  Google Scholar 

  7. S. Sharma, R. Rabindran, S. Robin, I. Dasgupta, Arch. Virol. 156, 2257–2262 (2011)

    Article  PubMed  CAS  Google Scholar 

  8. R. Joshi, V. Kumar, I. Dasgupta, J. Virol. Methods 109, 89 (2003)

    Article  PubMed  CAS  Google Scholar 

  9. A. Banerjee, S. Roy, J. Tarafdar, Virus Genes 43, 398 (2011)

    Article  PubMed  CAS  Google Scholar 

  10. N. Nath, S. Mathur, I. Dasgupta, Arch. Virol. 147(6), 1173–1187 (2002)

    Article  PubMed  CAS  Google Scholar 

  11. M.G. Murray, W.F. Thompson, Nucleic Acids Res. 8, 4321–4325 (1980)

    Article  PubMed  CAS  Google Scholar 

  12. J.D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, D.G. Higgins, Nucleic Acids Res. 24, 4876 (1997)

    Article  Google Scholar 

  13. T.A. Hall, Nucleic Acids Symp. Ser. 41, 95 (1999)

    CAS  Google Scholar 

  14. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, Mol. Biol. Evol. 28, 2731 (2011)

    Article  PubMed  CAS  Google Scholar 

  15. S.K. Mangrauthia, P. Malathi, S. Agarwal, G. Ramkukmar, D. Krishnaveni, C.N. Neeraja, M. Sheshu Madhav, D. Ladhalakshmi, S.M. Balachandran, B.C. Viraktamath, Virus Genes (2012). doi:10.1007/s11262-011-0708-3

    Google Scholar 

  16. M.S. Rosenberg, BMC Bioinformatics 6, 102 (2005)

    Article  PubMed  Google Scholar 

  17. X.P. Zhou, Y. **e, X.R. Tao, Z.K. Zhang, Z.H. Li, C.M. Fauquet, J. Gen. Virol. 84, 237–247 (2003)

    Article  PubMed  CAS  Google Scholar 

  18. M.M. Pooggin, R. Rajeswaran, M.V. Schepetilnikov, L.A. Ryabova, PLoS Pathog. 8(3), e1002568. (2012). doi:10.1371/journal.ppat.1002568

  19. A. Anjaneyulu, V.T. John, Phytopathology 62, 1116–1119 (1972)

    Article  Google Scholar 

  20. S.K. Mangrauthia, P. Malathi, D. Krishnaveni, C.S. Reddy, B.C. Viraktamath, S.M. Balachandran, C.N. Neeraja, A.K. Biswal, J. Mycol. Plant Pathol. 40, 445–449 (2010)

    CAS  Google Scholar 

  21. T. Gojobori, E.N. Moriyama, M. Kimura, Proc. Natl. Acad. Sci. USA 87, 10015–10018 (1990)

    Article  PubMed  CAS  Google Scholar 

  22. Z. Fan, G. Dahal, I. Dasgupta, J. Hay, R. Hull, J. Gen. Virol. 77, 847 (1996)

    Article  PubMed  CAS  Google Scholar 

  23. D. Posada, K.A. Crandall, E.C. Holmes, Annu. Rev. Genet. 36, 75 (2002)

    Article  PubMed  CAS  Google Scholar 

  24. S.K. Mangrauthia, B. Parameswari, R.K. Jain, S. Praveen, Biochem. Genet. 46, 835 (2008)

    Article  PubMed  CAS  Google Scholar 

  25. C. Roth, D.A. Liberles, BMC Plant Biol. 6, 12 (2006)

    Article  PubMed  Google Scholar 

  26. L. Duret, Trends Genet. 16, 287 (2000)

    Article  PubMed  CAS  Google Scholar 

  27. P.Q. Cabauatan, U. Melcher, K. Ishikawa, T. Omura, H. Hibino, H. Koganezawa, O. Azzam, J. Gen. Virol. 80, 2229–2237 (1999)

    PubMed  CAS  Google Scholar 

  28. O. Guerra-Peraza, D. Kirk, V. Seltzer, K. Veluthambi, A.C. Schmit, T. Hohnand, E. Herzog, J. Gen. Virol. 86, 1815–1826 (2005)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are highly thankful to the Project Director, DRR for constant support and encouragement. The financial support obtained from Fast track scheme of Department of Science and Technology, Govt. of India is highly acknowledged. B. Sailaja acknowledges the fellowship and financial support obtained from National Initiative on Climate Resilient Agriculture (NICRA) Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satendra K. Mangrauthia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangrauthia, S.K., Malathi, P., Agarwal, S. et al. The molecular diversity and evolution of Rice tungro bacilliform virus from Indian perspective. Virus Genes 45, 126–138 (2012). https://doi.org/10.1007/s11262-012-0751-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-012-0751-8

Keywords

Navigation