Log in

Germination of Agave obscura seeds: effects of storage time and crossing systems

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Agave reproduction can occur both sexually and asexually; however, the vast majority of species mainly propagate asexually. Seed germination studies are of great importance in conservation biology, ecological restoration, and the development of management plans. Our aim was to determine the effect of the crossing system and storage time on the germination success in seeds of Agave obscura (Agavaceae), a species endemic to Mexico. The seeds were derived from manual cross-pollination, manual self-pollination, and natural pollination, and had been stored for 19 and seven months. Germination experiments were conducted under controlled light conditions at 25 °C. The percentage of germination in seeds stored for seven months (76%) was higher than in those stored for 19 months (46%) (df = 1, dev.resid = 1439.6, Pr (> chi) =  < 0.05)) Crossing systems show effects in the percentage of germination (P(> │Chi │ < 0.05). The seed germination capacity decreased as a function of storage time. Seed storage time had no effect on subsequent seedling size, but pollination type did affect seedling growth. A. obscura produces viable seeds with germination capacity in a natural manner, which favors the maintenance of natural populations, although it’s necessary to evaluate other ecological processes such as the establishment of seedlings in the field and their survival in different age categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Field data are currently being analyzed for the preparation of another article, however, a portion of them are available upon request from M. Cuéllar-Martínez manuel.cuellarm@gmail.com.

References

  • Abdul-Baki AA, Moore GM (1979) Seed disinfection with hypochlorite: a selected literature review of hypochlorite chemistry and definition of terms. J Seed Technol 4:43–56

    CAS  Google Scholar 

  • Arizaga S, Ezcurra E (2002) Propagation mechanisms in Agave macroacantha (Agavaceae), a tropical arid-land succulent rosette. Am J Bot 89:632–641. https://doi.org/10.3732/ajb.89.4.632

    Article  PubMed  Google Scholar 

  • Ávila Castañeda BA, Cruz García F (2011) Sistema de incompatibilidad gametofítico en plantas: una oportunidad para evitar la endogamia. In: Fernández GA, Jaimes IB, Patlán CC, Fonseca JG, Meza HV (eds) Mensaje Bioquímico, vol XXXV, pp 67–78. Depto de Bioquímica Facultad de Medicina, Universidad Nacional Autónoma de México, México

  • Barrett SCH (2014) Evolution of mating systems: outcrossing versus selfing. In: Losos JB (eds) The Princeton guide to evolution. Princeton University Press, Princeton/Oxford, pp 356–362

  • Barriada-Bernal G, Almaraz-Abarca N, Gallardo-Velázquez T, Torres-Morán I, Herrera-Arrieta Y, González-Elizondo S, Delgado-Alvarado EA (2013) Seed vigor variation of Agave durangensis Gentry (Agavaceae). Am J Plant Sci 4:2227–2239. https://doi.org/10.4236/ajps.2013.411276

    Article  Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16. https://doi.org/10.1079/SSR2003150

    Article  Google Scholar 

  • Baskin JM, Baskin CC (2015) Inbreeding depression and the cost of inbreeding on seed germination. Seed Sci Res 25:355–385. https://doi.org/10.1017/S096025851500032X

    Article  Google Scholar 

  • Bewley JD, Black M (1994) Dormancy and the control of germination. In: Seeds, physiology of development and germination. Springer, New York, pp 199–271. https://doi.org/10.1007/978-1-4899-1002-8

  • Borbón-Palomares DB, Laborin-Sivirian F, Tinoco-Ojanguren C, Peñalba MC, Reyes-Ortega I, Molina-Freaner F (2018) Reproductive ecology of Agave colorata: the importance of nectar-feeding bats and the germination consequences of self-pollination. Plant Ecol 219:927–939. https://doi.org/10.1007/s11258-018-0847-x

    Article  Google Scholar 

  • Carrera VJ (1997) Variación de aciculas, vainas, conos y escamas en Pinus pseudostrobus Lindl. var. apulcensis Martínez, en el malpaís del centro de Veracruz, México. Dissertation, Universidad Veracruzana, México

  • Castro-Díaz AS, Guerrero-Beltrán JA (2013) El agave y sus productos. Temas Selectos De Ingeniera De Alimentos 7:53–61

    Google Scholar 

  • Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796. https://doi.org/10.1038/nrg2664

    Article  CAS  PubMed  Google Scholar 

  • Cházaro BMJ (1981) Nota sobre la tipificación de Agave obscura Schiede y su confusión con Agave xalapensis Roezl. Biotica 6:435–439

    Google Scholar 

  • CONAFOR (2008) Incendios forestales. Serie fascículos. Mexico; Secretaría de Seguridad y Protección Ciudadana-Centro Nacional de Prevención de Desastres

  • CONAFOR (2022) Reporte semanal de resultados de incendios forestales 2022. Cierre estadístico 2022. Coordinación general de conservación y restauración. Gerencia de manejo del fuego. Del 01 de enero al 31 de diciembre de 2022

  • CONAGUA (2019) Normales climatológicas de la estación de Las Vigas de Ramírez, Veracruz, periodo 1951–2010

  • Cruz-Nicolás J, Vargas-Hernández JJ, Ramírez-Vallejo P, López-Upton J (2008) Patrón de cruzamiento en poblaciones naturales de Pseudotsuga menziesii (Mirb.) Franco en México. Agrociencia 42:367–378

    Google Scholar 

  • Cuéllar-Martínez M (2020) Biología floral y polinización de Agave obscura en la región central de Veracruz. Dissertation, Universidad Veracruzana, México

  • Darwin C (1876) The effects of cross and self fertilization in the vegetable kingdom. John Murray, London

    Book  Google Scholar 

  • Delgado-Lemus A, Torres I, Blancas J, Casas A (2014) Vulnerability and risk management of Agave species in the Tehuacán Valley. México Journal of Ethnobiology and Ethnomedicine 10:53. https://doi.org/10.1186/1746-4269-10-53

    Article  PubMed  Google Scholar 

  • Eguiarte LE, Aguirre-Planter E, Aguirre X, Colín R, González A, Rocha M, Scheinvar E, Trejo L, Souza V (2013) From isozymes to genomics: population genetics and conservation of Agave in Mexico. Bot Rev 79:483–506. https://doi.org/10.1007/s12229-013-9123-x

    Article  Google Scholar 

  • Escobar-Guzmán RE, Hernández FZ, Vega KG, Simpson J (2008) Seed production and gametophyte formation in Agave tequilana and Agave americana. Botany 86:1343–1353. https://doi.org/10.1139/B08-099

    Article  Google Scholar 

  • Fenner M, Thompson K (2005) The ecology of seeds. Cambridge/New York

  • Flores J, Jurado E, Arredondo A (2006) Effect of light on germination of seeds of Cactaceae from the Chihuahuan Desert, Mexico. Seed Sci Res 16:149–155. https://doi.org/10.1079/SSR2006242

    Article  Google Scholar 

  • Flores J, González-Salvatierra C, Jurado E (2016) Effect of light on seed germination and seedling shape of succulent species from Mexico. J Plant Ecol 9:174–179. https://doi.org/10.1093/jpe/rtv046

    Article  Google Scholar 

  • Flores J, Pérez-Sánchez RM, Jurado E (2017) The combined effect of water stress and temperature on seed germination of Chihuahuan Desert species. J Arid Environ 146:95–98. https://doi.org/10.1016/j.jaridenv.2017.07.009

    Article  Google Scholar 

  • Freeman CE (1973) Some germination responses of Lechuguilla (Agave lecheguilla torr.). Southwest Nat 18:125–134. https://doi.org/10.2307/3670414

    Article  Google Scholar 

  • Freeman CE (1975) Germination responses of a New Mexico population of Parry Agave (Agave parryi Engelm. var. parryi) to constant temperature, water stress, and pH. Southwest Nat 20:69–74. https://doi.org/10.2307/3670012

    Article  Google Scholar 

  • Freeman CE, Tiffany RS, Reid WH (1977) Germination responses of Agave lecheguilla, A. parryi, and Fouquieria splendens. Southwest Nat 22:195–204. https://doi.org/10.2307/3669810

    Article  Google Scholar 

  • Galván L, Magaña V (2020) Forest fires in Mexico: an approach to estimate fire probabilities. Int J Wildland Fire 29:753–763

    Article  Google Scholar 

  • García Mendoza AA (2007) Los agaves de México. Ciencias 87:14–23

    Google Scholar 

  • García-Herrara EJ, Méndez-Gallegos SDJ, Talavera-Magaña D (2010) El género Agave spp. en México: Principales usos de importancia socieconómica y agroecológica. Revista Salud Pública y Nutrición 5:109–129

    Google Scholar 

  • García-Mendoza AA (2011) Agavaceae. Flora del Valle de Tehuacán-Cuicatlán. Instituto de Biología, Universidad Nacional Autónoma de México, México, D.F. Fasículo 88:1–95

    Google Scholar 

  • Garoma B, Chibsa T, Keno T, Denbi Y (2017) Effect to storage period on seed germination of different maize parental lines. J Nat Sci Res 7:8–14

    Google Scholar 

  • Gentry HS (1982) Agaves of continental North America. University of Arizona Press, Tucson

    Book  Google Scholar 

  • Guillén S, Benítez J, Martínez-Ramos M, Casas A (2009) Seed germination of wild, in situ-managed, and cultivated populations of columnar cacti in the Tehuacán-Cuicatlán Valley, Mexico. J Arid Environ 73:407–413. https://doi.org/10.1016/j.jaridenv.2008.12.018

    Article  Google Scholar 

  • Hong TD, Linington S, Ellis RH (1996) Seed storage behaviour : a compendium. Handbooks for genebanks: No 4. International Plant Genetic Resources Institute, Rome

  • Jordan PW, Nobel PS (1979) Infrequent establishment of seedlings of Agave deserti (Agavaceae) in the Northwestern Sonoran Desert. Am J Bot 66:1079–1084. https://doi.org/10.2307/2442574

    Article  Google Scholar 

  • Juárez Agis A, López Upton J, Vargas Hérnandez J, Sáenz Romero C (2006) Variación geográfica en la germinación y crecimiento inicial de plántulas de Pseudotsuga menziesii de México. Agrociencia 40:783–792. https://doi.org/10.1111/j.1654-1103.2005.tb02396.x

  • Justice OL, Bass N (1978) Principles and practices of seed storage. United States Department of Agriculture

  • Kczmarska E, Gawronki J, Dyduch-Sieminska M, Szypilo P, Szafranska B (2014) Inbreeding depression for seed germination and seedling vigor in strawberry (Fragaria x ananassa Duch.). Folia Horticulturae 26:133–138

    Article  Google Scholar 

  • Khanduri VP (2016) Mating system and seedling growth of five tropical tree species. Scientia Forestalis 44:509–517. https://doi.org/10.18671/scifor.v44n110.23

    Article  Google Scholar 

  • Kulkarni MG, Sparg SG, van Staden J (2005) Temperature and light requirements for seed germination and seedling growth of two medicinal Hyacinthaceae species. S Afr J Bot 71:349–353

    Article  Google Scholar 

  • Lindow-López L, Galíndez G, Aparicio-González M, Sühring S, Rojas-Aréchiga M, Pritchard HW, Ortega-Baes P (2018) Effects of alternating temperature on cactus seeds with a positive photoblastic response. J Arid Environ 148:74–77. https://doi.org/10.1016/j.jaridenv.2017.10.006

    Article  Google Scholar 

  • Mápula-Larreta M, López-Upton J, Vargas-Hernández J, Hérnandez-Livera A (2008) Germinación y vigor de semillas en Pseudotsuga menziesii de México. Ra **mhai 4:119–134

    Article  Google Scholar 

  • Muthoni J, Shimelis H, Melis R (2014) Genetics and reproductive biology of cultivated potato (Solanum tuberosum L.): implications in breeding. In: Ramawat KG, Mérillon JM, Shivanna KR (eds) Reproductive biology of plants. CRC Press, pp 164–194

  • Nikolaeva MG (1977) Factors controlling the seed dormancy pattern. In: Khan AA (ed) The physiology and biochemistry of seed dormancy and germination. North-Holland, Amsterdam, pp 51–77

    Google Scholar 

  • Nikolaeva MG (1969) Physiology of deep dormancy in seeds. Leningrad, Russia, Izdatel´stvo ‘Nauka’. (Translated from Russian by Shapiro Z). National Science Foundation, Washington, DC

  • Nobel PS (1977) Water relations of flowering of Agave deserti. Bot Gaz 138:1–6. https://doi.org/10.1086/336888

    Article  Google Scholar 

  • Orozco-Restrepo SM, Rojas-Duque SL, Miranda do Santos T, Aritizábal-Loaiza JC, Horst-Bruckner C, (2014) Evaluación de fructificación y determinación de la capacidad germinativa de semillas en Passifora setacea. Revista Agronomía 22:66–76

    Google Scholar 

  • Ortiz-Hernández YD, Gutiérrez-Hernández GF, Corzo-Ríos LJ, García-Ramírez E, Martínez-Tomás SH (2018) Varietal and germinative characterization of Agave potatorum (Asparagaceae) seeds with different origins. Botanical Sciences 96:628–639. https://doi.org/10.17129/botsci.1914

    Article  Google Scholar 

  • Pérez-Sánchez RM, Jurado E, Chapa-Vargas L, Flores J (2011) Seed germination of Southern Chihuahuan Desert plants in response to elevated temperatures. J Arid Environ 75:978–980. https://doi.org/10.1016/j.jaridenv.2011.04.020

    Article  Google Scholar 

  • Pritchard HW, Miller AP (1995) The effects of constant temperatures, light and seed quality on the germination characteristics of Agave americana. Boletín De La Sociedad Botánica De México 57:11–14. https://doi.org/10.17129/botsci.1472

    Article  Google Scholar 

  • Proietti S, Moscatello S, Riccio F, Downey P, Battistelli A (2021) Continuous lighting promotes plant growth, light conversion efficiency, and nutritional quality of Eruca vesicaria (L.) Cav. in controlled environment with minor effects due to light quality. Front Plant Sci 12:1–13. https://doi.org/10.3389/fpls.2021.730119

    Article  Google Scholar 

  • R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL: https://www.R-project.org/

  • Ralls K, Franlham R, Ballou JD (2013) Inbreeding and outbreeding. In: Levin SA (ed) Encyclopedia of biodiversity, 2nd edn. Elsevier, Amsterdam, pp 245–252

    Chapter  Google Scholar 

  • Ramírez-Tobías HM, Peña-Valdivia CB, Aguirre RJR, Reyes-Agüero JA, Sánchez-Urdaneta AB, Valle GS (2012) Seed germination temperatures of eight Mexican Agave species with economic importance. Plant Species Biol 27:124–137. https://doi.org/10.1111/j.1442-1984.2011.00341.x

    Article  Google Scholar 

  • Ramírez-Tobías HM, Peña-Valdivia CB, Aguirre R (2014) Respuestas bioquímico-fisiológicas de especies de Agave a la restricción de humedad. Botanical Sciences 92:131–139. https://doi.org/10.17129/botsci.156

    Article  Google Scholar 

  • Ramírez-Tobías HM, Niño Vázquez R, Aguirre Rivera JR, Flores J, De-Nova Vázquez JA, Jarquin Gálvez R (2016) Seed viability and effect of temperature on germination of Agave angustifolia subsp. tequilana and A. mapisaga; two useful Agave species. Genet Resour Crop Evol 63:881–888. https://doi.org/10.1007/s10722-015-0291-x

    Article  Google Scholar 

  • Roberts EH (1973) Predicting the storage life of seed. Seed Sci Technol 1:499–514

    Google Scholar 

  • Rocha M, Valera A, Eguiarte LE (2005) Reproductive ecology of five sympatric Agave littaea (Agavaceae) species in central Mexico. Am J Bot 92:1330–1341. https://doi.org/10.3732/ajb.92.8.1330

    Article  PubMed  Google Scholar 

  • Rojas-Aréchiga M, Orozco-Segovia A, Vázquez-Yanes C (1997) Effect of light on germination of seven species of cacti from the Zapotitlán Valley in Puebla, México. J Arid Environ 36:571–578. https://doi.org/10.1006/jare.1996.0218

    Article  Google Scholar 

  • Seed Information Database SID (2023) Society for ecological restoration, International Network for Seed Based Restoration and Royal Botanical Gardens Kew. https://ser-sid.org/about

  • Sen DN, Chawan DD (1970) Role of light and temperature in relation to seed germination and seedling growth of Asteracantha lingiolia Ness. Österreichische Botanische Zeitschrift 118:226–232

    Article  Google Scholar 

  • Sysoeva MI, Markovskaya EF, Shibaeva T (2010) Plants under continuous light: a review. Plant Strees 4:5–17

    Google Scholar 

  • Trame AM, Coddigton AJ, Paige KN (1995) Field and genetic studies testing optimal outcrosing in Agave schottii, a long-lived clonal plant. Oecologia 194:93–100. https://doi.org/10.1007/BF0036556

    Article  Google Scholar 

  • Trejo-Salazar RE, Scheinvar E, Eguiarte LE (2015) ¿Quién poliniza realmente los agaves? Diversidad de visitantes florales en 3 especies de Agave (Agavoideeae: Asparagaceae). Revista Mexicana De Biodiversidad 86:358–369. https://doi.org/10.1016/j.rmb.2015.04.007

    Article  Google Scholar 

  • Wickham H (2016) Ggplot2: Elegant graphics for data analysis, 2nd edn. Springer International Publishing

  • Wobbrock JO, Findlater L, Gergle D, Higgins JJ (2011) The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11). Association for Computing Machinery, New York, pp 143–146. https://doi.org/10.1145/1978942.1978963

Download references

Acknowledgements

The Consejo Nacional de Ciencia y Tecnología (CONACYT) provided a doctorate studies grant in the INBIOTECA, UV (M.C-M No. 340509). We thank our colleagues at the Ecology and Biotechnology of Symbiotic Organisms Laboratory of INBIOTECA, Hassan Polo and Rubén Guzmán, for their help with the laboratory work.

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. The preparation of the material and the data collection in the field were carried out by M.C-M. and with A.A-T. they carried out the analyses. The first draft of the manuscript was written by M.C-M. and J.G-G. All authors critically reviewed the manuscript and commented on earlier versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jorge Galindo-González.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interest.

Additional information

Communicated by Ed Witkowski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuéllar-Martínez, M., Galindo-González, J. & Andrade-Torres, A. Germination of Agave obscura seeds: effects of storage time and crossing systems. Plant Ecol 225, 189–199 (2024). https://doi.org/10.1007/s11258-023-01389-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-023-01389-z

Keywords

Navigation