Log in

Progress of SGLT2 inhibitors in the treatment of common immune-related nephropathies

  • Nephrology – Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

The immune system can lead to a variety of renal diseases through direct or indirect mechanisms. In immune-mediated nephropathy, though standardized treatment, there are still a small number of patients with further decline in renal function, which may even progress to renal failure; sodium-glucose cotransporter protein 2 (SLC5A2,SGLT2) inhibitors not only can significantly reduce blood glucose, but also have an additional protective effect on the kidneys and the heart; this review concludes the potential mechanism of the renal protective effect of SGLT2i and the new advances in the recent years in common immune-mediated nephropathies, which can provide new theoretical references to optimize the therapeutic strategy of common immune-mediated nephropathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Kant S, Kronbichler A, Sharma P et al (2022) Advances in understanding of pathogenesis and treatment of immune-mediated kidney disease: a review. Am J Kidney Dis 79(4):582–600. https://doi.org/10.1053/j.ajkd.2021.07.019

    Article  CAS  PubMed  Google Scholar 

  2. Kurts C, Panzer U, Anders HJ et al (2013) The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 13(10):738–753. https://doi.org/10.1038/nri3523

    Article  CAS  PubMed  Google Scholar 

  3. Kaminski H, Couzi L, Eberl M (2021) Unconventional T cells and kidney disease. Nat Rev Nephrol 17(12):795–813. https://doi.org/10.1038/s41581-021-00466-8

    Article  CAS  PubMed  Google Scholar 

  4. Cowie MR, Fisher M (2020) SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 17(12):761–772. https://doi.org/10.1038/s41569-020-0406-8

    Article  CAS  PubMed  Google Scholar 

  5. Khemais-Benkhiat S, Belcastro E, Idris-Khodja N et al (2020) Angiotensin II-induced redox-sensitive SGLT1 and 2 expression promotes high glucose-induced endothelial cell senescence. J Cell Mol Med 24(3):2109–2122. https://doi.org/10.1111/jcmm.14233

    Article  CAS  PubMed  Google Scholar 

  6. El-Daly M, Pulakazhi Venu VK, Saifeddine M et al (2018) Hyperglycaemic impairment of PAR2-mediated vasodilation: prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vascul Pharmacol 109:56–71. https://doi.org/10.1016/j.vph.2018.06.006

    Article  CAS  PubMed  Google Scholar 

  7. Miyata KN, Zhang SL, Chan JSD (2021) The rationale and evidence for SGLT2 inhibitors as a treatment for nondiabetic glomerular disease. Glomerular Dis 1(1):21–33. https://doi.org/10.1159/000513659

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hakroush S, Tampe D, Kluge IA et al (2022) Comparative analysis of SGLT-2 expression in renal vasculitis and lupus nephritis. Ann Rheum Dis 81(7):1048–1050. https://doi.org/10.1136/annrheumdis-2022-222167

    Article  PubMed  Google Scholar 

  9. Srinivasan Sridhar V, Ambinathan JPN, Kretzler M et al (2019) Renal SGLT mRNA expression in human health and disease: a study in two cohorts. Am J Physiol Renal Physiol 317(5):1224–1230. https://doi.org/10.1152/ajprenal.00370.2019

    Article  CAS  Google Scholar 

  10. Guo R, Wang P, Zheng X et al (2022) SGLT2 inhibitors suppress epithelial-mesenchymal transition in podocytes under diabetic conditions via downregulating the IGF1R/PI3K pathway. Front Pharmacol 13:897167. https://doi.org/10.3389/fphar.2022.897167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang F, Zhao Y, Wang Q et al (2019) Dapagliflozin attenuates renal tubulointerstitial fibrosis associated with type 1 diabetes by regulating STAT1/TGFβ1 signaling. Front Endocrinol (Lausanne) 10:441. https://doi.org/10.3389/fendo.2019.00441

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li D, Yu K, Feng F et al (2022) Hydroxychloroquine alleviates renal interstitial fibrosis by inhibiting the PI3K/Akt signaling pathway. Biochem Biophys Res Commun 610:154–161. https://doi.org/10.1016/j.bbrc.2022.04.058

    Article  CAS  PubMed  Google Scholar 

  13. Vanarsa K, Soomro S, Zhang T et al (2020) Quantitative planar array screen of 1000 proteins uncovers novel urinary protein biomarkers of lupus nephritis. Ann Rheum Dis 79(10):1349–1361. https://doi.org/10.1136/annrheumdis-2019-216312

    Article  CAS  PubMed  Google Scholar 

  14. Chalkia A, Gakiopoulou H, Theochari I et al (2022) TGF-β1/Smad signalling in proliferative glomerulonephritis associated with autoimmune diseases. Mediterr J Rheumatol 33(2):176–184. https://doi.org/10.31138/mjr.33.2.176

    Article  PubMed  PubMed Central  Google Scholar 

  15. Khalili M, Bonnefoy A, Genest DS et al (2020) Clinical use of complement, inflammation, and fibrosis biomarkers in autoimmune glomerulonephritis. Kidney Int Rep 5(10):1690–1699. https://doi.org/10.1016/j.ekir.2020.07.018

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lai ZW, Borsuk R, Shadakshari A et al (2013) Mechanistic target of rapamycin activation triggers IL-4 production and necrotic death of double-negative T cells in patients with systemic lupus erythematosus. J Immunol 191(5):2236–2246. https://doi.org/10.4049/jimmunol.1301005

    Article  CAS  PubMed  Google Scholar 

  17. Wu C, Fu Q, Guo Q et al (2019) Lupus-associated atypical memory B cells are mTORC1-hyperactivated and functionally dysregulated. Ann Rheum Dis 78(8):1090–1100. https://doi.org/10.1136/annrheumdis-2019-215039

    Article  CAS  PubMed  Google Scholar 

  18. Zhao XY, Li SS, He YX et al (2023) SGLT2 inhibitors alleviated podocyte damage in lupus nephritis by decreasing inflammation and enhancing autophagy. Ann Rheum Dis 82(10):1328–1340. https://doi.org/10.1136/ard-2023-224242

    Article  CAS  PubMed  Google Scholar 

  19. Elkeraie A, Zyada R, Elrggal ME et al (2023) Safety of SGLT2 inhibitors in patients with different glomerular diseases treated with immunosuppressive therapies. Eur J Clin Pharmacol 79(7):961–966. https://doi.org/10.1007/s00228-023-03508-1

    Article  CAS  PubMed  Google Scholar 

  20. Hernandez VK, Melville BTP, Siwaju K (2023) How does it work? Unraveling the mysteries by which empagliflozin helps diabetic and non-diabetic patients with heart failure. Cureus J Med Sci 15(9):6. https://doi.org/10.7759/cureus.45290

    Article  Google Scholar 

  21. Akiyama H, Nishimura A, Morita N et al (2023) Evolution of sodium-glucose co-transporter 2 inhibitors from a glucose-lowering drug to a pivotal therapeutic agent for cardio-renal-metabolic syndrome. Front Endocrinol. https://doi.org/10.3389/fendo.2023.1111984

    Article  Google Scholar 

  22. Abdollahi E, Keyhanfar F, Delbandi AA et al (2022) Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages. Eur J Pharmacol 918:174715. https://doi.org/10.1016/j.ejphar.2021.174715

    Article  CAS  PubMed  Google Scholar 

  23. Lee N, Heo YJ, Choi SE et al (2021) Anti-inflammatory effects of empagliflozin and gemigliptin on LPS-stimulated macrophage via the IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 signalling pathways. J Immunol Res 2021:9944880. https://doi.org/10.1155/2021/9944880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu YP, Wu HW, Zhu T et al (2022) Empagliflozin reduces kidney fibrosis and improves kidney function by alternative macrophage activation in rats with 5/6-nephrectomy. Biomed Pharmacother 156:113947. https://doi.org/10.1016/j.biopha.2022.113947

    Article  CAS  PubMed  Google Scholar 

  25. Lv X, Wang J, Zhang L et al (2022) Canagliflozin reverses Th1/Th2 imbalance and promotes podocyte autophagy in rats with membranous nephropathy. Front Immunol 13:993869. https://doi.org/10.3389/fimmu.2022.993869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang R, Fu P, Ma L (2023) Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 8(1):129. https://doi.org/10.1038/s41392-023-01379-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen H, Tran D, Yang HC et al (2020) Dapagliflozin and ticagrelor have additive effects on the attenuation of the activation of the NLRP3 inflammasome and the progression of diabetic cardiomyopathy: an AMPK-mTOR interplay. Cardiovasc Drugs Ther 34(4):443–461. https://doi.org/10.1007/s10557-020-06978-y

    Article  CAS  PubMed  Google Scholar 

  28. Rastogi A, Januzzi JL Jr (2023) Pleiotropic effects of sodium-glucose cotransporter-2 inhibitors in cardiovascular disease and chronic kidney disease. J Clin Med. https://doi.org/10.3390/jcm12082824

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vallon V, Verma S (2021) Effects of SGLT2 inhibitors on kidney and cardiovascular function. Annu Rev Physiol 83:503–528. https://doi.org/10.1146/annurev-physiol-031620-095920

    Article  CAS  PubMed  Google Scholar 

  30. Anders HJ, Peired AJ, Romagnani P (2022) SGLT2 inhibition requires reconsideration of fundamental paradigms in chronic kidney disease, “diabetic nephropathy”, IgA nephropathy and podocytopathies with FSGS lesions. Nephrol Dial Transplant 37(9):1609–1615. https://doi.org/10.1093/ndt/gfaa329

    Article  CAS  PubMed  Google Scholar 

  31. Chang DY, Li XQ, Chen M et al (2021) Dapagliflozin ameliorates diabetic kidney disease via upregulating crry and alleviating complement over-activation in db/db mice. Front Pharmacol 12:9. https://doi.org/10.3389/fphar.2021.729334

    Article  CAS  Google Scholar 

  32. Chang DY, Li XQ, Chen M et al (2021) Dapagliflozin ameliorates diabetic kidney disease via upregulating crry and alleviating complement over-activation in db/db mice. Front Pharmacol 12:729334. https://doi.org/10.3389/fphar.2021.729334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen X, Delić D, Cao Y et al (2023) Renoprotective effects of empagliflozin are linked to activation of the tubuloglomerular feedback mechanism and blunting of the complement system. Am J Physiol Cell Physiol 324(4):C951-c962. https://doi.org/10.1152/ajpcell.00528.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vallon V, Thomson SC (2020) The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol 16(6):317–336. https://doi.org/10.1038/s41581-020-0256-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Feng YZ, Ye YJ, Cheng ZY et al (2020) Non-invasive assessment of early stage diabetic nephropathy by DTI and BOLD MRI. Br J Radiol 93(1105):20190562. https://doi.org/10.1259/bjr.20190562

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mazer CD, Hare GMT, Connelly PW et al (2020) Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation 141(8):704–707. https://doi.org/10.1161/circulationaha.119.044235

    Article  PubMed  Google Scholar 

  37. Packer M (2021) Mechanisms leading to differential hypoxia-inducible factor signaling in the diabetic kidney: modulation by SGLT2 inhibitors and hypoxia mimetics. Am J Kidney Dis 77(2):280–286. https://doi.org/10.1053/j.ajkd.2020.04.016

    Article  CAS  PubMed  Google Scholar 

  38. Cai T, Ke Q, Fang Y et al (2020) Sodium-glucose cotransporter 2 inhibition suppresses HIF-1α-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice. Cell Death Dis 11(5):390. https://doi.org/10.1038/s41419-020-2544-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wheeler DC, Stefansson BV, Batiushin M et al (2020) The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrol Dial Transplant 35(10):1700–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heerspink HJL, Stefánsson BV, Correa-Rotter R et al (2020) Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383(15):1436–1446. https://doi.org/10.1056/NEJMoa2024816

    Article  CAS  PubMed  Google Scholar 

  41. Jongs N, Greene T, Chertow GM et al (2021) Effect of dapagliflozin on urinary albumin excretion in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol 9(11):755–766. https://doi.org/10.1016/s2213-8587(21)00243-6

    Article  CAS  PubMed  Google Scholar 

  42. Wheeler DC, Toto RD, Stefánsson BV et al (2021) A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int 100(1):215–224. https://doi.org/10.1016/j.kint.2021.03.033

    Article  CAS  PubMed  Google Scholar 

  43. Wheeler DC, Stefánsson BV, Jongs N et al (2021) Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol 9(1):22–31. https://doi.org/10.1016/s2213-8587(20)30369-7

    Article  CAS  PubMed  Google Scholar 

  44. Cherney DZI, Dekkers CCJ, Barbour SJ et al (2020) Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol 8(7):582–593. https://doi.org/10.1016/s2213-8587(20)30162-5

    Article  CAS  PubMed  Google Scholar 

  45. Wheeler DC, Jongs N, Stefansson BV et al (2022) Safety and efficacy of dapagliflozin in patients with focal segmental glomerulosclerosis: a prespecified analysis of the dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial. Nephrol Dial Transplant 37(9):1647–1656

    Article  CAS  PubMed  Google Scholar 

  46. Hammad H, Shaaban A, Philips MV et al (2023) Effect of sodium–glucose transporter 2 inhibitor empagliflozin on proteinuria and kidney function progression in patients with non-diabetic glomerulonephritis: a pilot superiority randomized controlled trial. Int Urol Nephrol. https://doi.org/10.1007/s11255-023-03539-8

    Article  PubMed  PubMed Central  Google Scholar 

  47. Elkeraie A, Zyada R, Elrggal ME et al (2023) Safety of SGLT2 inhibitors in patients with different glomerular diseases treated with immunosuppressive therapies. Eur J Clin Pharmacol. https://doi.org/10.1007/s00228-023-03508-1

    Article  PubMed  Google Scholar 

  48. Säemann M, Kronbichler A (2022) Call for action in ANCA-associated vasculitis and lupus nephritis: promises and challenges of SGLT-2 inhibitors. Ann Rheum Dis 81(5):614–617. https://doi.org/10.1136/annrheumdis-2021-221474

    Article  CAS  PubMed  Google Scholar 

  49. Wang H, Li T, Sun F et al (2022) Safety and efficacy of the SGLT2 inhibitor dapagliflozin in patients with systemic lupus erythematosus: a phase I/II trial. RMD Open. https://doi.org/10.1136/rmdopen-2022-002686

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bailey CJ, Day C, Bellary S (2022) Renal protection with SGLT2 inhibitors: effects in acute and chronic kidney disease. Curr Diab Rep 22(1):39–52. https://doi.org/10.1007/s11892-021-01442-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schwaiger E, Burghart L, Signorini L et al (2019) Empagliflozin in posttransplantation diabetes mellitus: A prospective, interventional pilot study on glucose metabolism, fluid volume, and patient safety. Am J Transplant 19(3):907–919. https://doi.org/10.1111/ajt.15223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Attallah N, Yassine L (2019) Use of empagliflozin in recipients of kidney transplant: a report of 8 cases. Transplant Proc 51(10):3275–3280. https://doi.org/10.1016/j.transproceed.2019.05.023

    Article  CAS  PubMed  Google Scholar 

  53. Mahling M, Schork A, Nadalin S et al (2019) Sodium-glucose cotransporter 2 (SGLT2) inhibition in kidney transplant recipients with diabetes mellitus. Kidney Blood Press Res 44(5):984–992. https://doi.org/10.1159/000501854

    Article  CAS  PubMed  Google Scholar 

  54. Halden TAS, Kvitne KE, Midtvedt K et al (2019) Efficacy and safety of empagliflozin in renal transplant recipients with posttransplant diabetes mellitus. Diabetes Care 42(6):1067–1074. https://doi.org/10.2337/dc19-0093

    Article  CAS  PubMed  Google Scholar 

  55. Lim JH, Kwon S, Jeon Y et al (2022) The efficacy and safety of SGLT2 inhibitor in diabetic kidney transplant recipients. Transplantation 106(9):e404–e412. https://doi.org/10.1097/tp.0000000000004228

    Article  CAS  PubMed  Google Scholar 

  56. Sarafidis P, Pella E, Kanbay M et al (2023) SGLT-2 inhibitors and nephroprotection in patients with diabetic and non-diabetic chronic kidney disease. Curr Med Chem 30(18):2039–2060. https://doi.org/10.2174/0929867329666220825121304

    Article  CAS  PubMed  Google Scholar 

  57. Hammad H, Shaaban A, Philips MV et al (2023) Effect of sodium-glucose transporter 2 inhibitor empagliflozin on proteinuria and kidney function progression in patients with non-diabetic glomerulonephritis: a pilot superiority randomized controlled trial. Int Urol Nephrol. https://doi.org/10.1007/s11255-023-03539-8

    Article  PubMed  PubMed Central  Google Scholar 

  58. Antlanger M, Domenig O, Kaltenecker CC et al (2022) Combined sodium glucose co-transporter-2 inhibitor and angiotensin-converting enzyme inhibition upregulates the renin-angiotensin system in chronic kidney disease with type 2 diabetes: Results of a randomized, double-blind, placebo-controlled exploratory trial. Diabetes Obes Metab 24(5):816–826. https://doi.org/10.1111/dom.14639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heerspink HJL, Stefansson BV, Chertow GM et al (2020) Rationale and protocol of the Dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) randomized controlled trial. Nephrol Dial Transplant 35(2):274–282

    Article  PubMed  PubMed Central  Google Scholar 

  60. Herrington WG, Baigent C, Haynes R (2023) Empagliflozin in patients with chronic kidney disease. Reply N Engl J Med 388(24):2301–2302. https://doi.org/10.1056/NEJMc2301923

    Article  PubMed  Google Scholar 

  61. Packer M, Anker SD, Butler J et al (2020) Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 383(15):1413–1424. https://doi.org/10.1056/NEJMoa2022190

    Article  CAS  PubMed  Google Scholar 

  62. Ma C, Li X, Li W et al (2023) The efficacy and safety of SGLT2 inhibitors in patients with non-diabetic chronic kidney disease: a systematic review and meta-analysis. Int Urol Nephrol. https://doi.org/10.1007/s11255-023-03586-1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors declare that they have no conflict of interest.

Funding

Health Commission Scientific Research Plan Project of Hunan Province, China, C2019172

Author information

Authors and Affiliations

Authors

Contributions

GQ.H. and YF.W. wrote the main manuscript. F.C. and J.T. did conceptualization and methodology. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Feng Chen or ** Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Wu, Y., Chen, F. et al. Progress of SGLT2 inhibitors in the treatment of common immune-related nephropathies. Int Urol Nephrol (2024). https://doi.org/10.1007/s11255-024-04141-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11255-024-04141-2

Keywords

Navigation