Log in

A Modulus of Smoothness for Some Banach Function Spaces

  • Published:
Ukrainian Mathematical Journal Aims and scope

Based on the Steklov operator, we consider a modulus of smoothness for functions in some Banach function spaces, which can be not translation invariant, and establish its main properties. A constructive characterization of the Lipschitz class is obtained with the help of the Jackson-type direct theorem and the inverse theorem on trigonometric approximation. As an application, we present several examples of related (weighted) function spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Abilov and F. V. Abilova, “Some problems of the approximation of 2π -periodic functions by Fourier sums in the space\({L}_{2\pi }^{2}\) ,” Math. Notes, 76, No. 5-6, 749–757 (2004).

  2. R. Akgün, “Polynomial approximation in weighted Lebesgue spaces,” East J. Approx., 17, No. 3, 253–266 (2011).

    MathSciNet  Google Scholar 

  3. R. Akgün, “Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent,” Ukr. Math. Zh., 63, No. 1, 3–23 (2011); English translation: Ukr. Math. J., 63, No. 1, 1–26 (2011).

  4. R. Akgün, “Polynomial approximation of functions in weighted Lebesgue and Smirnov spaces with nonstandard growth,” Georgian Math. J., 18, No. 2, 203–235 (2011).

    Article  MathSciNet  Google Scholar 

  5. R. Akgün, “Exponential approximation in variable exponent Lebesgue spaces on the real line,” Constr. Math. Anal., 5, No. 4, 214–237 (2022).

    MathSciNet  Google Scholar 

  6. R. Akg¨un and D. M. Israfilov, “Approximation in weighted Orlicz spaces,” Math. Slovaca, 61, No. 4, 601–618 (2011).

  7. V. V. Arestov, “Integral inequalities for trigonometric polynomials and their derivatives,” Izv. Akad. Nauk SSSR Ser. Mat., 45, No. 1, 3–22 (1981).

    MathSciNet  Google Scholar 

  8. S. N. Bernstein, Collected works, Vol. 1: Constructive Theory of Functions [1905–1930], Izd. Akad. Nauk SSSR, Moscow (1952).

  9. C. Bennett and R. Sharpley, “Interpolation of operators,” Pure Appl. Math., 129, Academic Press, Boston, MA (1988).

  10. S. Bloom and R. Kerman, “Weighted LΦ integral inequalities for operators of Hardy type,” Studia Math., 110, No. 1, 35–52 (1994).

    Article  MathSciNet  Google Scholar 

  11. D. Cruz-Uribe, L. Diening, and P. Hästö, “The maximal operator on weighted variable Lebesgue spaces,” Fract. Calc. Appl. Anal., 14, No. 3, 361–374 (2011).

    Article  MathSciNet  Google Scholar 

  12. F. Dai, “Jackson-type inequality for doubling weights on the sphere,” Constr. Approx., 24, No. 1, 91–112 (2006).

    Article  MathSciNet  Google Scholar 

  13. R. A. De Vore and G. G. Lorentz, “Constructive approximation,” Fundamental Principles of Mathematical Sciences, 303, Springer-Verlag, Berlin (1993).

  14. L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, “Lebesgue and Sobolev spaces with variable exponents,” Lecture Notes Math., 2017, Springer-Verlag, Heidelberg (2011).

  15. Z. Ditzian, “Rearrangement invariance and relations among measures of smoothness,” Acta Math. Hungar., 135, No. 3, 270–285 (2012).

    Article  MathSciNet  Google Scholar 

  16. Z. Ditzian and K. G. Ivanov, “Strong converse inequalities,” J. Anal. Math., 61, 61–111 (1993).

    Article  MathSciNet  Google Scholar 

  17. E. A. Gadjieva, Investigation of the Properties of Functions with Quasimonotone Fourier Coefficients in Generalized Nikolskii–Besov Spaces [in Russian], Author’s Abstract of the PhD Thesis, Tbilisi (1986).

  18. A. Guven and D. M. Israfilov, “Approximation by trigonometric polynomials in weighted rearrangement invariant spaces,” Glas. Mat., Ser. III, 44 (64), No. 2, 423–446 (2009).

  19. D. M. Israfilov and A. Guven, “Approximation by trigonometric polynomials in weighted Orlicz spaces,” Studia Math., 174, No. 2, 147–168 (2006).

    Article  MathSciNet  Google Scholar 

  20. S. Z. Jafarov, “Approximation by Fejér sums of Fourier trigonometric series in weighted Orlicz space,” Hacet. J. Math. Stat., 43, No. 3, 259–268 (2013).

    Google Scholar 

  21. S. Z. Jafarov, “On moduli of smoothness in Orlicz classes,” Proc. Inst. Math. Mech. Azerb. Natl. Acad. Sci. Azerb., 33, No. 51, 85–92 (2010).

    MathSciNet  Google Scholar 

  22. A. Y. Karlovich, “Fredholmness of singular integral operators with piecewise continuous coefficients on weighted Banach function spaces,” J. Integral Equat. Appl., 15, No. 3, 263–320 (2003).

    Article  MathSciNet  Google Scholar 

  23. M. Khabazi, “The mean convergence of trigonometric Fourier series in weighted Orlicz classes,” Proc. Razmadze Math. Inst., 129, 65–75 (2002).

    MathSciNet  Google Scholar 

  24. O. Kováčik and J. Rákosník, “On spaces Lp(x) and Wk,p(x),” Czechoslovak Math. J., 41 (116), No. 4, 592–618 (1991).

  25. I. I. Sharapudinov, “On the uniform boundedness in Lp (p = p(x)) of some families of convolution operators,” Math. Notes, 59, No. 1–2, 205–212 (1996).

    Article  MathSciNet  Google Scholar 

  26. I. I. Sharapudinov, “Some problems in approximation theory in the spaces Lp(x)(E),” Anal. Math., 33, No. 2, 135–153 (2007).

    MathSciNet  Google Scholar 

  27. I. I. Sharapudinov, “Approximation of functions in \({L}_{2\pi }^{p\left(\bullet \right)}\) by trigonometric polynomials,” Izv. Ros. Akad. Nauk, Ser. Mat., 77, No. 2, 197–224 (2013).

  28. R. Taberski, “Approximation of functions possessing derivatives of positive orders,” Ann. Polon. Math., 34, No. 1, 13–23 (1977).

    Article  MathSciNet  Google Scholar 

  29. 9A. F. Timan, “Theory of approximation of functions of a real variable,” Internat. Ser. Monogr., Pure Appl. Math., 34, Pergamon Press Book, Macmillan Co., New York (1963).

  30. A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, New York (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramazan Akgün.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, No. 8, pp. 1015–1031, August, 2023. Ukrainian DOI: https://doi.org/10.37863/umzh.v75i8.970.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akgün, R. A Modulus of Smoothness for Some Banach Function Spaces. Ukr Math J 75, 1159–1177 (2024). https://doi.org/10.1007/s11253-023-02253-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-023-02253-z

Navigation