Log in

Study of Stickiness Perception of Fabrics Based on Friction and ERP Method

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Sweats within the fabric–skin interface increase friction, cause stickiness perception, and facilitate wearing discomfort. To study the stickiness perception of wet fabrics, subjective assessment, skin friction, and neurophysiological response of the brain were systematically studied. Four fabrics that are commonly used as summer clothing were chosen for the tactile stimulus samples. Different wetness levels were designed by changing the sweat absorption amount. The results showed that the adhesive friction played a dominant role when the skin contacted the dry fabrics. The features of the friction coefficient μ, multiple fractal spectrum width, and P300 amplitude had strong correlations with the perceived stickiness of fabrics. Under dry and moist conditions, the surface roughness and water absorption capacity of fabric were the dominant factors that influenced the friction, vibration, and stickiness perception of fabrics. The parietal lobe and occipital lobe were positively activated and involved in the stickiness perceptions of fabric. Fabrics with low water absorption capacity and high μ tended to excite a high P300 amplitude and large activated brain area. The mechanical stimulation of the tactile receptor is associated with the brain’s cognition during stickiness perception. This study is meaningful for understanding the frictional behavior between fabric and skin surface and the cognitive mechanism in the stickiness perception of fabrics to reduce friction and improve wear comfort. It is also helpful in the evaluation of tactile stimulation of fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data are available on request.

References

  1. Jiang, R., Wang, Y.: Research progress of stickiness perception of human body in dressing. J Text. Res. 40, 177–184 (2019). https://doi.org/10.13475/j.fzxb.20180702008

    Article  Google Scholar 

  2. Lou, L., Ji, F., Qiu, Y.: Simulating adhesion of wet fabrics to water: Surface tension-based theoretical model and experimental verification. Text. Res. J. 85, 1987–1998 (2015). https://doi.org/10.1177/0040517515580531

    Article  CAS  Google Scholar 

  3. Gerhardt, L.C., Strässle, V., Lenz, A., Spencer, N.D., Derler, S.: Influence of epidermal hydration on the friction of human skin against textiles. J. R. Soc. Interface. 5, 1317–1328 (2008). https://doi.org/10.1098/rsif.2008.0034

    Article  Google Scholar 

  4. Maggie, K.P., Chau, K.H., Kan, C.W., Fan, Jtu: Magnitude estimation approach for assessing stickiness sensation perceived in wet fabrics. Fibers Polym. 19, 2418–2430 (2018). https://doi.org/10.1007/s12221-018-8626-9

    Article  Google Scholar 

  5. Johnson, K.: Neural mechanisms of tactual form and texture perception. Annu. Rev. Neurosci. 15, 227–250 (1992). https://doi.org/10.1146/annurev.neuro.15.1.227

    Article  CAS  Google Scholar 

  6. Bodegård, A., Ledberg, A., Geyer, S., Naito, E., Zilles, K., Roland, P.E.: Object shape differences reflected by somatosensory cortical activation. J. Neurosci. 20, RC51 (2000). https://doi.org/10.1523/jneurosci.20-01-j0004.2000

    Article  Google Scholar 

  7. Amaied, E., Vargiolu, R., Bergheau, J.M., Zahouani, H.: Aging effect on tactile perception: Experimental and modelling studies. Wear 332–333, 715–724 (2015). https://doi.org/10.1016/j.wear.2015.02.030

    Article  CAS  Google Scholar 

  8. Renganathan, P., Schwartz, C.J.: Investigation of human perception of tactile graphics and its dependence on fundamental friction mechanisms. Wear. 476, 203729 (2021). https://doi.org/10.1016/j.wear.2021.203729

    Article  CAS  Google Scholar 

  9. Derler, S., Gerhardt, L.C.: Tribology of skin: Review and analysis of experimental results for the friction coefficient of human skin. Tribol. Lett. 45, 1–27 (2012). https://doi.org/10.1007/s11249-011-9854-y

    Article  Google Scholar 

  10. Tomlinson, S.E., Lewis, R., Liu, X., Texier, C., Carré, M.J.: Understanding the friction mechanisms between the human finger and flat contacting surfaces in moist conditions. Tribol. Lett. 41, 283–294 (2011). https://doi.org/10.1007/s11249-010-9709-y

    Article  CAS  Google Scholar 

  11. Jiang, R., Wang, Y.: Study of the human stickiness perception of wet fabric on the volar forearm via two contact modes: friction and adhesion-separation. Perception 49, 1311–1332 (2020). https://doi.org/10.1177/0301006620976992

    Article  Google Scholar 

  12. Zhang, Z., Tang, X., Li, J., Yang, W.: The effect of dynamic friction with wet fabrics on skin wetness perception. Int. J. Occup. Saf. Ergon. 26, 370–383 (2020). https://doi.org/10.1080/10803548.2018.1453023

    Article  Google Scholar 

  13. Moungou, A., Thonnard, J.L., Mouraux, A.: EEG frequency tagging to explore the cortical activity related to the tactile exploration of natural textures. Sci. Rep. (2016). https://doi.org/10.1038/srep20738

    Article  Google Scholar 

  14. Muñoz, F., Reales, J.M., Sebastián, M.Á., Ballesteros, S.: An electrophysiological study of haptic roughness: Effects of levels of texture and stimulus uncertainty in the P300. Brain Res. 1562, 59–68 (2014). https://doi.org/10.1016/j.brainres.2014.03.013

    Article  CAS  Google Scholar 

  15. Tang, W., Zhang, M., Chen, G., Liu, R., Peng, Y., Chen, S., Shi, Y., Hu, C., Bai, S.: Investigation of tactile perception evoked by ridged texture using ERP and non-linear methods. Front. Neurosci. (2021). https://doi.org/10.3389/fnins.2021.676837

    Article  Google Scholar 

  16. Inui, K., Wang, X., Tamura, Y., Kaneoke, Y., Kakigi, R.: Serial processing in the human somatosensory system. Cereb Cortex. 14, 851–857 (2004). https://doi.org/10.1093/cercor/bhh043

    Article  Google Scholar 

  17. Adhikari, B.M., Sathian, K., Epstein, C.M., Lamichhane, B., Dhamala, M.: Oscillatory activity in neocortical networks during tactile discrimination near the limit of spatial acuity. Neuroimage 91, 300–310 (2014). https://doi.org/10.1016/j.neuroimage.2014.01.007

    Article  Google Scholar 

  18. Chen, S., Ge, S.: Experimental research on the tactile perception from fingertip skin friction. Wear 376–377, 305–314 (2017). https://doi.org/10.1016/j.wear.2016.11.014

    Article  CAS  Google Scholar 

  19. Tang, W., Lu, X., Chen, S., Ge, S., **g, X., Wang, X., Liu, R., Zhu, H.: Tactile perception of skin: research on late positive component of event-related potentials evoked by friction. J. Text. Inst. 111, 623–629 (2020). https://doi.org/10.1080/00405000.2019.1661067

    Article  Google Scholar 

  20. Camillieri, B., Bueno, M.A., Fabre, M., Juan, B., Lemaire-Semail, B., Mouchnino, L.: From finger friction and induced vibrations to brain activation: Tactile comparison between real and virtual textile fabrics. Tribol. Int. 126, 283–296 (2018). https://doi.org/10.1016/j.triboint.2018.05.031

    Article  Google Scholar 

  21. Tang, K.P.M., Kan, C.W., Fan, J.T.: Psychophysical measurement of wet and clingy sensation of fabrics by the volar forearm test. J. Sens. Stud. 30, 329–347 (2015). https://doi.org/10.1111/joss.12161

    Article  Google Scholar 

  22. Raccuglia, M., Hodder, S., Havenith, G.: Human wetness perception in relation to textile water absorption parameters under static skin contact. Text. Res. J. 87, 2449–2463 (2017). https://doi.org/10.1177/0040517516671127

    Article  CAS  Google Scholar 

  23. Gottlieb, J.: From thought to action: The parietal cortex as a bridge between perception, action, and cognition. Neuron 53, 9–16 (2007). https://doi.org/10.1016/j.neuron.2006.12.009

    Article  CAS  Google Scholar 

  24. Chen, Y.S., Chen, H.L., Lu, C.H., Chen, M.H., Chou, K.H., Tsai, N.W., Yu, C.C., Chiang, P.L., Lin, W.C.: Reduced lateral occipital gray matter volume is associated with physical frailty and cognitive impairment in Parkinson’s disease. Eur. Radiol. 29, 2659–2668 (2019). https://doi.org/10.1007/s00330-018-5855-7

    Article  Google Scholar 

  25. Teodorescu, M., Rahnejat, H.: Nano-scale contact model for microfiber tip attachment, detachment and friction. 2008 Proc STLE/ASME Int J Tribol Conf IJTC 2008, 83–85 (2009). https://doi.org/10.1115/ijtc2008-71220

    Article  Google Scholar 

  26. Li, C., Zhang, T., Zang, X., Zhao, Z., Fang, L., Zhao, N.: Void fraction measurement based on flow noise decoupling and differential pressure. IEEE Trans. Instrum. Meas. 71, 1–12 (2022). https://doi.org/10.1109/TIM.2022.3151153

    Article  Google Scholar 

  27. Albuquerque, E.L., Cottam, M.G.: Plasmon-polaritons in quasiperiodic structures. Polaritons Period: Quasiperiodic Struct. (2004). https://doi.org/10.1016/b978-044451627-5/50006-7

    Article  Google Scholar 

  28. Li, J., Zhang, X., Tang, J., Cai, J., Liu, X.: Audio magnetotelluric signal-noise identification and separation based on multifractal spectrum and matching pursuit. Fractals. 27, 1940007 (2019). https://doi.org/10.1142/S0218348X19400073

    Article  Google Scholar 

  29. Li, G., Huang, Y., Lin, Y., Pan, X.: Multifractal analysis of frictional vibration in the running-in process. Tribol. Trans. 56, 284–289 (2013). https://doi.org/10.1080/10402004.2012.750023

    Article  CAS  Google Scholar 

  30. Adams, M.J., Briscoe, B.J., Johnson, S.A.: Friction and lubrication of human skin. Tribol. Lett. 26, 239–253 (2007). https://doi.org/10.1007/s11249-007-9206-0

    Article  CAS  Google Scholar 

  31. Derler, S., Rotaru, G.M., Ke, W., Issawi-Frischknecht, L.E., Kellenberger, P., Scheel-Sailer, A., Rossi, R.M.: Microscopic contact area and friction between medical textiles and skin. J. Mech. Behav. Biomed. Mater. 38, 114–125 (2014). https://doi.org/10.1016/j.jmbbm.2014.06.014

    Article  CAS  Google Scholar 

  32. Derler, S., Gerhardt, L.C., Lenz, A., Bertaux, E., Hadad, M.: Friction of human skin against smooth and rough glass as a function of the contact pressure. Tribol. Int. 42, 1565–1574 (2009). https://doi.org/10.1016/j.triboint.2008.11.009

    Article  Google Scholar 

  33. André, T., Lefèvre, P., Thonnard, J.L.: A continuous measure of fingertip friction during precision grip. J. Neurosci. Methods. 179, 224–229 (2009). https://doi.org/10.1016/j.jneumeth.2009.01.031

    Article  Google Scholar 

  34. Nonomura, Y., Fujii, T., Arashi, Y., Miura, T., Maeno, T., Tashiro, K., Kamikawa, Y., Monchi, R.: Tactile impression and friction of water on human skin. Colloids Surfaces B Biointerfaces. 69, 264–267 (2009). https://doi.org/10.1016/j.colsurfb.2008.11.024

    Article  CAS  Google Scholar 

  35. Raccuglia, M., Pistak, K., Heyde, C., Qu, J., Mao, N., Hodder, S., Havenith, G.: Human wetness perception of fabrics under dynamic skin contact. Text. Res. J. 88, 2155–2168 (2018). https://doi.org/10.1177/0040517517716905

    Article  CAS  Google Scholar 

  36. Wolfram, L.J.: Friction of skin. J. Soc. Cosmet. Chem. 34, 465–476 (1983)

    Google Scholar 

  37. Sivamani, R.K., Maibach, H.I.: Tribology of skin. P. I. Mech. Eng. J-J. Eng. 220, 729–737 (2006). https://doi.org/10.1243/13506501JET85

    Article  Google Scholar 

  38. Hendriks, C.P., Franklin, S.E.: Influence of surface roughness, material and climate conditions on the friction of human skin. Tribol. Lett. 37, 361–373 (2010). https://doi.org/10.1007/s11249-009-9530-7

    Article  CAS  Google Scholar 

  39. Polich, J.: Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 118, 2128–2148 (2007). https://doi.org/10.1016/j.clinph.2007.04.019

    Article  Google Scholar 

  40. Gray, H.M., Ambady, N., Lowenthal, W.T., Deldin, P.: P300 as an index of attention to self-relevant stimuli. J. Exp. Soc. Psychol. 40, 216–224 (2004). https://doi.org/10.1016/S0022-1031(03)00092-1

    Article  Google Scholar 

  41. Donchin, E., Isreal, J.B.: Event-related potentials and psychological theory. Prog. Brain Res. 54, 697–715 (1980). https://doi.org/10.1016/S0079-6123(08)61692-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China No. 51875566 and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Funding

This study was funded by the National Natural Science Foundation of China No. 51875566 and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. XF wrote the main manuscript text and MZ prepared the samples. Prof. WT provided guidance on the content of the article. CT and YP reviewed the manuscript text.

Corresponding author

Correspondence to Wei Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Disclosures

**ngxing Fang, Wei Tang, Chaoquan Tang, Meimei Zhang, and Yuxing Peng declare that they have no known competing financial interests to disclose or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Tang, W., Tang, C. et al. Study of Stickiness Perception of Fabrics Based on Friction and ERP Method. Tribol Lett 71, 23 (2023). https://doi.org/10.1007/s11249-023-01698-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01698-4

Keywords

Navigation