Log in

Dioxidomolybdenum(VI) Complex Supported on Chloromethylated Polymer and Its Catalytic Role in Peroxidase Mimicking Activity Towards Oxidation of Dopamine

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Dioxidomolybdenum(VI) complex, [MoVIO2(HL)2] (1) using ligand H2L (I) (synthesised from o-phenylenediamine and salicylaldehyde) and it’s heterogenized form [MoVIO2(L)2]@PS (2), supported on chloromethylated polystyrene (PS) have been isolated. The homogenous complex has been characterized by various spectroscopic techniques (FT-IR, UV–Visible, 1H and 13C NMR), elemental analysis (C, H and N), single crystal X-ray and thermal studies. The heterogeneous compound 2 was additionally studied by field emission-scanning electron microscopy, energy dispersive spectroscopy, UV–Visible diffuse reflectance spectroscopy and microwave plasma atomic emission spectroscopy. The reactivity of compounds 1 and 2 was studied towards their peroxidase mimetic activity in the oxidation of dopamine to aminochrome driven by H2O2 as an oxidant. Kinetic studies show that the reaction follows Michaelis–Menten like kinetics in both cases. Heterogenized compound 2 was further used to synthesize neuromelanin, a form of polymer generally observed in brain cells upon oxidation of dopamine and is a probable cause of Parkinson’s disease.

Graphical Abstract

Dioxidomolybdenum(VI) complex, [MoVIO2(HL)2] (1) using ligand H2L (I) (synthesised from o-phenylenediamine and salicylaldehyde) has been immobilized on chloromethylated polystyrene and used as catalyst for the peroxidase mimetic activity in the oxidation of dopamine to aminochrome driven by H2O2 as an oxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 4
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data that support the findings of this study are mostly provided in the research article.

References

  1. Yan MH, Wang X, Zhu X (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radical Biol Med 62:90–101. https://doi.org/10.1016/j.freeradbiomed.2012.11.014

    Article  CAS  Google Scholar 

  2. Gligorich KM, Sigman MS (2009) Recent advancements and challenges of palladiumII-catalyzed oxidation reactions with molecular oxygen as the sole oxidant. Chem Commun 2009(26):3854–3867. https://doi.org/10.1039/B902868D

    Article  Google Scholar 

  3. Piera J, Backvall JE (2008) Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer—a biomimetic approach. Angew Chem Int Ed 47:3506–3523. https://doi.org/10.1002/anie.200700604

    Article  CAS  Google Scholar 

  4. Stahl SS (2005) Palladium-catalyzed oxidation of organic chemicals with O2. Science 309:1824–1820. https://doi.org/10.1126/science.1114666

    Article  CAS  PubMed  Google Scholar 

  5. Punniyamurthy T, Velusamy S, Iqbal J (2005) Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev 105:2329–2364. https://doi.org/10.1021/cr050523v

    Article  CAS  PubMed  Google Scholar 

  6. Stahl SS (2004) Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover. Angew Chem Int Ed 43:3400–3420. https://doi.org/10.1002/anie.200300630

    Article  CAS  Google Scholar 

  7. Funabiki T (1997) Iron model studies on dioxygenases. Springer, Berlin

    Book  Google Scholar 

  8. Osborne RL, Klinman JP (2011) Copper–oxygen chemistry. Wiley, Hoboken, pp 1–22

    Book  Google Scholar 

  9. Bertini I, Gray HB, Lippard SJ, Valentine JS (1994) Bioinorganic chemistry. University Science Books, Sausalito

    Google Scholar 

  10. Martell AE, Sawyer DT (1988) Oxygen complexes and oxygen activation by transition metals. Springer, Boston, pp 131–148. https://doi.org/10.1007/978-1-4613-0955-0

    Book  Google Scholar 

  11. Maurya MR, Dhaka S, Avecilla F (2015) Oxidative bromination of monoterpene (thymol) using dioxidomolybdenum(VI) complexes of hydrazones of 8-formyl-7-hydroxy-4-methylcoumarin. Polyhedron 96:79–87. https://doi.org/10.1016/j.poly.2015.05.001

    Article  CAS  Google Scholar 

  12. Maurya MR, Rana L, Avecilla F (2016) Oxidoperoxidotungsten(VI) and dioxidotungsten(VI) complexes catalyzed oxidative bromination of thymol in presence of H2O2–KBr–HClO4. Inorg Chim Acta 440:172–180. https://doi.org/10.1016/j.ica.2015.10.045

    Article  CAS  Google Scholar 

  13. Maurya MR, Rana L, Avecilla F (2017) Molybdenum complexes with a µ-O{MoO2}2 core: their synthesis, crystal structure and application as catalysts for the oxidation of bicyclic alcohols using N-based additives. New J Chem 41:724–734. https://doi.org/10.1039/C6NJ03162E

    Article  CAS  Google Scholar 

  14. Maurya MR, Saini N, Avecilla F (2015) Effect of N-based additive on the optimization of liquid phase oxidation of bicyclic, cyclic and aromatic alcohols catalyzed by dioxidomolybdenum(VI) and oxidoperoxidomolybdenum(VI) complexes. RSC Adv 5:101076–101088. https://doi.org/10.1039/C5RA16490G

    Article  ADS  CAS  Google Scholar 

  15. Siu TC, Silva I, Lunn MJ, John A (2020) Influence of the pendant arm in deoxydehydration catalyzed by dioxomolybdenum complexes supported by amine bisphenolate ligands. New J Chem 44:9933–9941. https://doi.org/10.1039/D0NJ02151B

    Article  CAS  Google Scholar 

  16. Riisiö A, Lehtonen A, Hänninen MM, Sillanpää R (2013) Synthesis, structure and catalytic properties of dinuclear MoVI complexes with ditopic diaminotetraphenols. Eur J Inorg Chem 2013:1499–1508. https://doi.org/10.1002/ejic.201201234

    Article  CAS  Google Scholar 

  17. Maurya MR, Arya A, Adäo P, Pessoa JC (2008) Immobilisation of oxovanadium(IV), dioxomolybdenum(VI) and copper(II) complexes on polymers for the oxidation of styrene, cyclohexene and ethylbenzene. Appl Catal A 351:239–252. https://doi.org/10.1016/j.apcata.2008.09.021

    Article  CAS  Google Scholar 

  18. Maurya MR, Kumar N (2015) Sodium bicarbonate assisted oxidation, by H2O2, of styrene and cyclohexene using polymer grafted dioxidomolybdenum(VI) complex as a catalyst. J Mol Catal A 406:204–212. https://doi.org/10.1016/j.molcata.2015.06.002

    Article  CAS  Google Scholar 

  19. Maurya MR, Tomar R, Rana L, Avecilla F (2018) Trinuclear dioxidomolybdenum(VI) complexes of tritopic phloroglucinol-based ligands and their catalytic applications for the selective epoxidation of olefins. Eur J Inorg Chem 2018:2952–2964. https://doi.org/10.1002/ejic.201800440

    Article  CAS  Google Scholar 

  20. Wong YL, Tong LH, Dilworth JR, Ng DKP, Lee HK (2010) New dioxo–molybdenum(VI) and –tungsten(VI) complexes with N-capped tripodal N2O2 tetradentate ligands: synthesis, structures and catalytic activities towards olefinepoxidation. Dalton Trans 39:4602–4611. https://doi.org/10.1039/B926864B

    Article  CAS  PubMed  Google Scholar 

  21. Dupé A, Hossain MK, Schachner JA, Belaj F, Lehtonen A, Nordlander E, Mösch-Zanetti NC (2015) Dioxomolybdenum(VI) and -tungsten(VI) complexes with multidentate aminobisphenol ligands as catalysts for olefin epoxidation. Eur J Inorg Chem 2015:3572–3579. https://doi.org/10.1002/ejic.201500055

    Article  CAS  Google Scholar 

  22. Annese C, Caputo D, D′Accolti L, Fusco C, Nacci A, Rossin A, Tuci G, Giambastiani G (2019) Dioxomolybdenum(VI) complexes with salicylamide ligands: synthesis, structure, and catalysis in the epoxidation of olefins under eco-friendly conditions. Eur J Inorg Chem 2019(2):221–229. https://doi.org/10.1002/ejic.201801096

    Article  CAS  Google Scholar 

  23. Hossain MK, Köhntopp A, Haukka M, Richmond MG, Lehtonen A, Nordlander E (2020) Cis- and trans molybdenum oxo complexes of a prochiral tetradentate aminophenolate ligand: synthesis, characterization and oxotransfer activity. Polyhedron 178:114312. https://doi.org/10.1016/j.poly.2019.114312

    Article  CAS  Google Scholar 

  24. Ta S, Ghosh M, Salam N, Ghosh S, Brandão P, Félix V, Hira SK, Manna PP, Das D (2019) Mo(VI) complexes of amide–imine conjugates for tuning the selectivity of fluorescence recognition of Y(III) vs. pb(II). ACS Appl Bio Mater 2:3964–3973. https://doi.org/10.1039/D2RA06035C

    Article  CAS  PubMed  Google Scholar 

  25. Ziegler JE, Du G, Fanwick PE, Abu-Omar MM (2009) An efficient method for the preparation of oxo molybdenum salalen complexes and their unusual use as hydrosilylation catalysts. Inorg Chem 48:11290–11296. https://doi.org/10.1021/ic901794h

    Article  CAS  PubMed  Google Scholar 

  26. Maurya MR, Saini N, Avecilla F (2016) Study of temperature dependent three component dynamic covalent assembly via Hantzsch reaction catalyzed by dioxido- and oxidoperoxidomolybdenum(VI) complexes under solvent free conditions. RSC Adv 6:12993–13009. https://doi.org/10.1039/C5RA24791H

    Article  ADS  CAS  Google Scholar 

  27. Maurya MR, Rana L, Jangra N, Avecilla F (2017) Bis{cis-[MoO2]} complexes of 4,6-diacetyl resorcinol bis(hydrazone) and their catalytic application for the three components dynamic covalent assembly via Hantzsch reaction. ChemistrySelect 2:6767–6777. https://doi.org/10.1002/slct.201701629

    Article  CAS  Google Scholar 

  28. Maurya MR, Tomar R, Gupta P, Avecilla F (2020) Trinuclear cis-dioxidomolybdenum(VI) complexes of compartmental C3 symmetric ligands: synthesis, characterization, DFT study and catalytic application for hydropyridines (Hps) via the Hantzsch reaction. Polyhedron 186:114617. https://doi.org/10.1016/j.poly.2020.114617

    Article  CAS  Google Scholar 

  29. Muthusami R, Moorthy M, Irena K, Govindaraj A, Manickam C, Rangappan R (2018) Designing a biomimetic catalyst for phenoxazinone synthase activity using a mesoporous Schiff base copper complex with a novel double-helix morphology. New J Chem 42:18608–18620. https://doi.org/10.1039/C8NJ03638A

    Article  CAS  Google Scholar 

  30. Maia DO, Chagas AMS, Araújo AMM, Júnior AVM, Ferreira IML, Lemos FCD, Gondim AD (2018) Catalytic pyrolysis of glycerol in the presence of Nickel (II) Schiff base complex supported in SBA-15: kinetic and products (TG-FTIR and PY-CG/MS). Thermochim Acta 669:160–168. https://doi.org/10.1016/j.tca.2018.09.005

    Article  CAS  Google Scholar 

  31. Heydari N, Bikas R, Shaterian M, Lis T (2022) Green solvent free epoxidation of olefins by a heterogenised hydrazone-dioxidotungsten(VI) coordination compound. RSC Adv 12:4813–4827. https://doi.org/10.1039/d1ra09217k

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heydari N, Bikas R, Shaterian M, Krawczyk MS, Lis T (2023) Investigation of the substituent effects on the oxidation of styrene derivatives by silica-supported heterogeneous oxidovanadium(V) coordination compound. Appl Organomet Chem 37:e6976. https://doi.org/10.1002/aoc.6976

    Article  CAS  Google Scholar 

  33. Heydari N, Bikas R, Shaterian M, Lis T (2023) Selective oxidation of benzyl alcohols by silica-supported heterogeneous catalyst containing dioxidotungsten(VI) core. Appl Organomet Chem 37:e6939. https://doi.org/10.1002/aoc.6939

    Article  CAS  Google Scholar 

  34. Mirzaee M, Bahramian B, Shahraki M, Moghadam H, Mirzaee A (2018) Molybdenum containing catalysts grafted on functionalized hydrous zirconia nano-particles for epoxidation of alkenes. Catal Lett 148:3003–3017. https://doi.org/10.1007/s10562-018-2521-2

    Article  CAS  Google Scholar 

  35. Maurya MR, Chauhan A, Verma A, Kumar U, Avecilla F (2022) Amine-functionalized titanium dioxide supported dioxidomolybdenum(VI) complexes as functional model for phenoxazinone synthase enzyme. Catal Today 388–389:274–287. https://doi.org/10.1016/j.cattod.2020.06.031

    Article  CAS  Google Scholar 

  36. Maurya MR, Chauhan A, Avecilla F (2022) Synthesis, characterization and biomimetic activity of heterogenized dioxidomolybdenum(VI) and analogous homogeneous complexes. ChemistrySelect 7:e202202327. https://doi.org/10.1002/slct.202202327

    Article  CAS  Google Scholar 

  37. Maurya MR, Chauhan A (2023) Synthesis, characterization and biomimetic activity of heterogenized dioxidomolybdenum(VI) complex and its homogeneous analogue. Top Catal 66:420–434. https://doi.org/10.1007/s11244-022-01747-7

    Article  CAS  Google Scholar 

  38. Maurya MR, Chauhan A (2023) Titania supported dioxidotungsten(VI) complex as bio-mimic for the type II copper-containing oxidase enzyme phenoxazinone synthase. New J Chem 47:2858–2873. https://doi.org/10.1039/d2nj05277f

    Article  CAS  Google Scholar 

  39. Hadigavabar AD, Tabatabaeian K, Zanjanchi MA, Mamaghani M (2018) Molybdenum anchored onto zeolite beta: an efficient catalyst for the one-pot synthesis of octahydroquinazolinone derivatives under solvent-free conditions. React Kinet Mech Catal 124:857–871. https://doi.org/10.1007/s11144-018-1370-8

    Article  CAS  Google Scholar 

  40. Maurya MR (2018) Vanadium complexes based polymer supported catalysts: a brief account of research from our group. Top Catal 61:1500–1513. https://doi.org/10.1007/s11244-018-1006-2

    Article  CAS  Google Scholar 

  41. Maurya MR, Chauhan A, Arora S, Gupta P (2022) Triazole based oxidovanadium(V) complex supported on chloromethylated polymer and its catalytic activity for the synthesis of dihydropyrimidinones (DHPMs). Catal Today 397–399:3–15. https://doi.org/10.1016/j.cattod.2022.03.006

    Article  CAS  Google Scholar 

  42. Mungse HP, Verma S, Kumar N, Sain B, Khatri OP (2012) Grafting of oxo-vanadium Schiff base on graphenenanosheets and its catalytic activity for the oxidation of alcohols. J Mater Chem 22:5427–5433. https://doi.org/10.1039/C2JM15644J

    Article  CAS  Google Scholar 

  43. Masteri-Farahani M, Ghahremani M (2019) Surface functionalization of graphene oxide and graphene oxide-magnetite nanocomposite with molybdenum-bidentate Schiff base complex. J Phys Chem Solids 130:6–12. https://doi.org/10.1016/j.jpcs.2019.02.006

    Article  ADS  CAS  Google Scholar 

  44. Majumdar A, Sarkar S (2011) Bioinorganic chemistry of molybdenum and tungsten enzymes: a structural–functional modeling approach. Coord Chem Rev 255:1039–1054. https://doi.org/10.1016/j.ccr.2010.11.027

    Article  CAS  Google Scholar 

  45. Bisaglia M, Mammi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 282:15597–15605. https://doi.org/10.1074/jbc.m610893200

    Article  CAS  PubMed  Google Scholar 

  46. Double KL, Zecca L, Costi P, Mauer M, Griesinger C, Ito S, Ben-Shachar D, Bringmann G, Fariello RG, Riederer P, Gerlach M (2000) Structural characteristics of human substantia nigra neuromelanin and synthetic dopamine melanins. J Neurochem 75:2583–2589. https://doi.org/10.1046/j.1471-4159.2000.0752583.x

    Article  CAS  PubMed  Google Scholar 

  47. Napolitano A, Manini P, d’Ischia M (2011) Oxidation chemistry of catecholamines and neuronal degeneration: an update. Curr Med Chem 18:1832–1845. https://doi.org/10.2174/092986711795496863

    Article  CAS  PubMed  Google Scholar 

  48. Hastings TG (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J Neurochem 64(2):919–924. https://doi.org/10.1046/j.1471-4159.1995.64020919.x

    Article  CAS  PubMed  Google Scholar 

  49. Segura-Aguilar J (1996) Peroxidase activity of liver microsomal vitamin D 25-hydroxylase catalyzes 25-hydroxylation of vitamin D3 and oxidation of dopamine to aminochrome. Biochem Mol Med 58(1):122–129. https://doi.org/10.1006/bmme.1996.0039

    Article  CAS  PubMed  Google Scholar 

  50. Foppoli C, Coccia R, Cini C, Rosei MA (1997) Catecholamines oxidation by xanthine oxidase. Biochim Biophys Acta 1334(2–3):200–206. https://doi.org/10.1016/s0304-4165(96)00093-1

    Article  CAS  PubMed  Google Scholar 

  51. Galzigna L, Iuliis AD, Zanatta L (2000) Enzymatic dopamine peroxidation in substantia nigra of human brain. Clin Chim Acta 300(1–2):131–138. https://doi.org/10.1016/S0009-8981(00)00313-2

    Article  CAS  PubMed  Google Scholar 

  52. Thompson CM, Capdevila JH, Strobel HW (2000) Recombinant cytochrome P450 2D18 metabolism of dopamine and arachidonic acid. J Pharmacol Exp Ther 294(3):1120–1130

    CAS  PubMed  Google Scholar 

  53. Segura-Aguilar J, Muñoz P, Paris I (2016) Aminochrome as new preclinical model to find new pharmacological treatment that stop the development of Parkinson’s disease. Curr Med Chem 23:346–359. https://doi.org/10.2174/0929867323666151223094103

    Article  CAS  PubMed  Google Scholar 

  54. Segura-Aguilar J (2019) On the role of aminochrome in mitochondrial dysfunction and endoplasmic reticulum stress in Parkinson’s disease. Front Neurosci 13:271. https://doi.org/10.3389/fnins.2019.00271

    Article  PubMed  PubMed Central  Google Scholar 

  55. Herrera A, Muñoz P, Steinbusch HWM, Segura-Aguilar J (2017) Are dopamine oxidation metabolites involved in the loss of dopaminergic neurons in the nigrostriatal system in Parkinson’s disease? ACS Chem Neurosci 8:702–711. https://doi.org/10.1021/acschemneuro.7b00034

    Article  CAS  PubMed  Google Scholar 

  56. Chen GJJ, McDonald JW, Newton WE (1976) Synthesis of Mo(IV) and Mo(V) complexes using oxo abstraction by phosphines. Mechanistic implications. Inorg Chem 15:2612–2615. https://pubs.acs.org/doi/pdf/https://doi.org/10.1021/ic50165a008

    Article  CAS  Google Scholar 

  57. Rao NS, Ratnam CV (1955) Reaction between o-phenylenediamine and aromatic aldehydes. Curr Sci 24:299–301. https://www.jstor.org/stable/24055218

    CAS  Google Scholar 

  58. Maurya MR, Tomar R, Avecilla F, Ribeiro N, Carvalho MFN, Kuznetsov ML, Correia I, Pessoa JC (2020) Trinuclear vanadium(IV) and vanadium(V) complexes derived from 2,4,6-triacetylphloroglucinol and study of their peroxidase mimicking activity. Dalton Trans 49:2589–2609. https://doi.org/10.1039/C9DT04415A

    Article  CAS  PubMed  Google Scholar 

  59. Peuronen A, Sillanpää R, Lehtonen A (2018) The synthesis and vibrational spectra of 16O-enriched and 18O-enriched cis-MO2 (M = Mo, W) complexes. ChemistrySelect 3:3814–3818. https://doi.org/10.1002/slct.201800671

    Article  CAS  Google Scholar 

  60. Bridelli MG, Tampellini D, Zecca L (1999) The structure of neuromelanin and its iron binding site studied by infrared spectroscopy. FEBS Lett 457:18–22. https://doi.org/10.1016/S0014-5793(99)01001-7

    Article  CAS  PubMed  Google Scholar 

  61. Zecca L, Pietra R, Goj C, Mecacci C, Radice D, Sabbioni E (1994) Iron and other metals in neuromelanin, substantia nigra, and putamen of human brain. J Neurochem 62:1097–1101. https://doi.org/10.1046/j.1471-4159.1994.62031097.x

    Article  CAS  PubMed  Google Scholar 

  62. Smythies J (1996) On the function of neuromelanin. Proc Royal Soc Lond Ser B Biol Sci 263:487–489

    Article  ADS  CAS  Google Scholar 

  63. Maurya MR, Uprety B, Avecilla F, Adão P, Pessoa JC (2015) Vanadium(V) complexes of a tripodal ligand, their characterisation and biological implications. Dalton Trans 44:17736–17755. https://doi.org/10.1039/C5DT02716K

    Article  CAS  PubMed  Google Scholar 

  64. Oliveira JAF, Silva MP, Souza B, Camargo TP, Szpoganicz B, Neves A, Bortoluzzi A (2016) Dopamine polymerization promoted by a catecholase biomimetic CuII(µ-OH)CuII complex containing a triazine-based ligand. Dalton Trans 45:15294–15297. https://doi.org/10.1039/C6DT02032A

    Article  PubMed  Google Scholar 

  65. Albada HB, Golub E, Willner I (2016) Rational design of supramolecular hemin/G-quadruplex–dopamine aptamer nucleoapzyme systems with superior catalytic performance. Chem Sci 7:3092–3101. https://doi.org/10.1039/C5SC04832J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Biniuri Y, Albada B, Wolff M, Golub E, Gelman D, Willner I (2018) Cu2+ or Fe3+ terpyridine/aptamer conjugates: nucleoapzymes catalyzing the oxidation of dopamine to aminochrome. ACS Catal 8:1802–1809. https://doi.org/10.1021/acscatal.7b03454

    Article  CAS  Google Scholar 

  67. Golub E, Albada HB, Liao WC, Biniuri Y, Willner I (2016) Nucleoapzymes: hemin/G-quadruplex DNAzyme–aptamer binding site conjugates with superior enzyme-like catalytic functions. J Am Chem Soc 138:164–172. https://doi.org/10.1021/jacs.5b09457

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M. R. M. thanks the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, New Delhi, India for financial support of the work (Grant number CRG/2018/ 000182). A.P. thanks Council of Scientific and Industrial Research, New Delhi, India for Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mannar R. Maurya.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1386.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, M.R., Patter, A., Chauhan, A. et al. Dioxidomolybdenum(VI) Complex Supported on Chloromethylated Polymer and Its Catalytic Role in Peroxidase Mimicking Activity Towards Oxidation of Dopamine. Top Catal 67, 466–482 (2024). https://doi.org/10.1007/s11244-023-01861-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01861-0

Keywords

Navigation