Log in

Highly Ethylene-Selective Electroreduction CO2 Over Cu Phosphate Nanostructures with Tunable Morphology

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Highly selective production of valuable ethylene from electrocatalytic CO2 reduction reaction (ECO2RR) is particularly desirable yet challenging. Morphology engineering is an effective strategy for catalyst design, which can adjust the electronic structure of catalyst surface, change the adsorption behavior of critical reaction intermediates over catalyst surface, and thus regulate the activity of electrocatalytic CO2 reduction reaction. In this work, we prepared copper phosphate catalysts with different morphologies and tested their catalytic activity for the ECO2RR in the flow cell. Compared with irregular flocculent aggregates, copper phosphate nanospheres exhibit a high and stable ethylene Faradaic efficiency of 47% with high current density of 350 mA·cm− 2, which is higher than the 200 mA·cm− 2 required for industrial applications. The catalysts were extensively characterized by SEM, EDS, XRD, ICP-OES, XPS, BET and CO-TPD. Combining the characterization results and activity data, we found that the superior spherical morphology of copper phosphate can increase the electron density around Cu, stabilize the Cu+ species on the surface through the electron transfer between P and Cu, and adjust the adsorption strength of CO intermediates (*CO) to enhance the productivity of C2+ products. This work provides new insights into catalyst design for highly efficient C2H4 production from the electrocatalytic CO2 reduction reaction by tuning morphologies of Cu-based catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jiang X, Nie X, Guo X, Song C, Chen JG (2020) Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev 120:7984–8034

    Article  CAS  PubMed  Google Scholar 

  2. Din IU, Shaharun MS, Alotaibi MA, Alharthi AI, Naeem A (2019) Recent developments on heterogeneous catalytic CO2 reduction to methanol. J CO2 Utilization 34:20–33

    Article  CAS  Google Scholar 

  3. Jung H, Lee SY, Lee CW, Cho MK, Won DH, Kim C, Oh HS, Min BK, Hwang YJ (2019) Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2 reduction reaction. J Am Chem Soc 141:4624–4633

    Article  CAS  PubMed  Google Scholar 

  4. Zhong M, Tran K, Min Y, Wang C, Wang Z, Dinh CT, De Luna P, Yu Z, Rasouli AS, Brodersen P, Sun S, Voznyy O, Tan CS, Askerka M, Che F, Liu M, Seifitokaldani A, Pang Y, Lo SC, Ip A, Ulissi Z, Sargent EH (2020) Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581:178–183

    Article  CAS  PubMed  Google Scholar 

  5. Ma W, He X, Wang W, **e S, Zhang Q, Wang Y (2021) Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem Soc Rev 50:12897–12914

    Article  CAS  PubMed  Google Scholar 

  6. Wang K, Men Y, Liu S, Wang J, Li Y, Tang Y, Li Z, An W, Pan X, Li L (2021) Decoupling the size and support/metal loadings effect of Ni/SiO2 catalysts for CO2 methanation. Fuel 304:121388

    Article  CAS  Google Scholar 

  7. Gao D, Arán-Ais RM, Jeon HS, Roldan B, Cuenya (2019) Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal 2:198–210

    Article  CAS  Google Scholar 

  8. Tang Y, Men Y, Liu S, Wang J, Wang K, Li Y, An W (2021) Morphology-dependent support effect of Ru/MnOx catalysts on CO2 methanation. Colloids Surf A 630:127636

    Article  CAS  Google Scholar 

  9. Li Y, Men Y, Liu S, Wang J, Wang K, Tang Y, An W, Pan X, Li L (2021) Remarkably efficient and stable Ni/Y2O3 catalysts for CO2 methanation: Effect of citric acid addition. Appl Catal B 293:120206

    Article  CAS  Google Scholar 

  10. Li Z, Men Y, Liu S, Wang J, Qin K, Tian D, Shi T, Zhang L, An W (2022) Boosting CO2 hydrogenation efficiency for methanol synthesis over Pd/In2O3/ZrO2 catalysts by crystalline phase effect. Appl Surf Sci 603:154420

    Article  CAS  Google Scholar 

  11. Qin K, Men Y, Liu S, Wang J, Li Z, Tian D, Shi T, An W, Pan X, Li L (2022) Direct conversion of carbon dioxide to liquid hydrocarbons over K-modified CoFeOx/zeolite multifunctional catalysts. J CO2 Utilization 65:102208

    Article  CAS  Google Scholar 

  12. Shi T, Men Y, Liu S, Wang J, Li Z, Qin K, Tian D, An W, Pan X, Li L (2022) Engineering the crystal facets of Pt/In2O3 catalysts for high-efficiency methanol synthesis from CO2 hydrogenation. Colloids Surf A 651:129782

    Article  CAS  Google Scholar 

  13. Tian D, Men Y, Liu S, Wang J, Li Z, Qin K, Shi T, An W (2022) Engineering crystal phases of oxides in tandem catalysts for high-efficiency production of light olefins from CO2 hydrogenation. Colloids Surf A 653:129945

    Article  CAS  Google Scholar 

  14. Salvatore DA, Gabardo CM, Reyes A, O’Brien CP, Holdcroft S, Pintauro P, Bahar B, Hickner M, Bae C, Sinton D, Sargent EH, Berlinguette CP (2021) Designing anion exchange membranes for CO2 electrolysers. Nat Energy 6:339–348

    Article  CAS  Google Scholar 

  15. De Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH (2019) What would it take for renewably powered electrosynthesis to displace petrochemical processes?,Science,364

  16. Chen Y, Vise A, Klein WE, Cetinbas FC, Myers DJ, Smith WA, Deutsch TG, Neyerlin KC (2020) A robust, scalable platform for the electrochemical conversion of CO2 to formate: identifying pathways to higher energy efficiencies. ACS Energy Letters 5:1825–1833

    Article  CAS  Google Scholar 

  17. Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Norskov JK, Jaramillo TF, Chorkendorff I (2019) Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev 119:7610–7672

    Article  CAS  PubMed  Google Scholar 

  18. Kibria MG, Dinh CT, Seifitokaldani A, De Luna P, Burdyny T, Quintero-Bermudez R, Ross MB, Bushuyev OS, de Garcia FP, Yang D, Sinton EH, Sargent (2018) A surface reconstruction route to high productivity and selectivity in CO2 electroreduction toward C2+ hydrocarbons. Adv Mater 30:e1804867

    Article  PubMed  Google Scholar 

  19. Han L, Song S, Liu M, Yao S, Liang Z, Cheng H, Ren Z, Liu W, Lin R, Qi G, Liu X, Wu Q, Luo J, **n HL (2020) Stable and efficient single-atom zn catalyst for CO2 reduction to CH4. J Am Chem Soc 142:12563–12567

    Article  CAS  PubMed  Google Scholar 

  20. Pan F, Yang Y (2020) Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ Sci 13:2275–2309

    Article  CAS  Google Scholar 

  21. Lim J, Kang PW, Jeon SS, Lee H (2020) Electrochemically deposited sn catalysts with dense tips on a gas diffusion electrode for electrochemical CO2 reduction. J Mater Chem A 8:9032–9038

    Article  CAS  Google Scholar 

  22. Ding P, Zhao H, Li T, Luo Y, Fan G, Chen G, Gao S, Shi X, Lu S, Sun X (2020) Metal-based electrocatalytic conversion of CO2 to formic acid/formate. J Mater Chem A 8:21947–21960

    Article  CAS  Google Scholar 

  23. Yang F, Chen A, Deng PL, Zhou Y, Shahid Z, Liu H, **a BY (2019) Highly efficient electroconversion of carbon dioxide into hydrocarbons by cathodized copper-organic frameworks. Chem Sci 10:7975–7981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Choi C, Kwon S, Cheng T, Xu M, Tieu P, Lee C, Cai J, Lee HM, Pan X, Duan X, Goddard WA, Huang Y (2020) Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat Catal 3:804–812

    Article  CAS  Google Scholar 

  25. Dutta A, Rahaman M, Luedi NC, Mohos M, Broekmann P (2016) Morphology matters: tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal 6:3804–3814

    Article  CAS  Google Scholar 

  26. Huang Y, Handoko AD, Hirunsit P, Yeo BS (2017) Electrochemical reduction of CO2 using copper single-crystal surfaces: Effects of CO* coverage on the selective formation of ethylene. ACS Catal 7:1749–1756

    Article  CAS  Google Scholar 

  27. Jeon HS, Kunze S, Scholten F, Roldan B, Cuenya (2017) Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene. ACS Catal 8:531–535

    Article  Google Scholar 

  28. Mangione G, Huang J, Buonsanti R, Corminboeuf C (2019) Dual-facet mechanism in copper nanocubes for electrochemical CO2 reduction into ethylene. J Phys Chem Lett 10:4259–4265

    Article  CAS  PubMed  Google Scholar 

  29. Sultan S, Hyun Kim J, Kim S, Kwon Y, Lee JS (2021) Innovative strategies toward challenges in PV-powered electrochemical CO2 reduction. J Energy Chem 60:410–416

    Article  CAS  Google Scholar 

  30. Mou S, Li Y, Yue L, Liang J, Luo Y, Liu Q, Li T, Lu S, Asiri AM, **ong X, Ma D, Sun X (2021) Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion. Nano Res 14:2831–2836

    Article  CAS  Google Scholar 

  31. Gao D, Zhang Y, Zhou Z, Cai F, Zhao X, Huang W, Li Y, Zhu J, Liu P, Yang F, Wang G, Bao X (2017) Enhancing CO2 electroreduction with the metal-oxide interface. J Am Chem Soc 139:5652–5655

    Article  CAS  PubMed  Google Scholar 

  32. Chu S, Yan X, Choi C, Hong S, Robertson AW, Masa J, Han B, Jung Y, Sun Z (2020) Stabilization of Cu+ by tuning a CuO–CeO2 interface for selective electrochemical CO2 reduction to ethylene. Green Chem 22:6540–6546

    Article  CAS  Google Scholar 

  33. Zhang B, Zhang J, Hua M, Wan Q, Su Z, Tan X, Liu L, Zhang F, Chen G, Tan D, Cheng X, Han B, Zheng L, Mo G (2020) Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets. J Am Chem Soc 142:13606–13613

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Chen Z, Han P, Du Y, Gu Z, Xu X, Zheng G (2018) Single-atomic cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal 8:7113–7119

    Article  CAS  Google Scholar 

  35. Li Q, Zhu W, Fu J, Zhang H, Wu G, Sun S (2016) Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy 24:1–9

    Article  Google Scholar 

  36. Yin Z, Yu C, Zhao Z, Guo X, Shen M, Li N, Muzzio M, Li J, Liu H, Lin H, Yin J, Lu G, Su D, Sun S (2019) Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene. Nano Lett 19:8658–8663

    Article  CAS  PubMed  Google Scholar 

  37. Zhou Y, Che F, Liu M, Zou C, Liang Z, De Luna P, Yuan H, Li J, Wang Z, **e H, Li H, Chen P, Bladt E, Quintero-Bermudez R, Sham TK, Bals S, Hofkens J, Sinton D, Chen G, Sargent EH (2018) Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat Chem 10:974–980

    Article  CAS  PubMed  Google Scholar 

  38. Su X, Sun Y, ** L, Zhang L, Yang Y, Kerns P, Liu B, Li S, He J (2020) Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products. Appl Catal B 269:118800

    Article  CAS  Google Scholar 

  39. Hu H, Tang Y, Hu Q, Wan P, Dai L, Yang XJ (2018) In-situ grown nanoporous Zn-Cu catalysts on brass foils for enhanced electrochemical reduction of carbon dioxide. Appl Surf Sci 445:281–286

    Article  CAS  Google Scholar 

  40. Herzog A, Bergmann A, Jeon HS, Timoshenko J, Kuhl S, Rettenmaier C, Lopez Luna M, Haase FT (2021) Roldan Cuenya, Operando investigation of Ag-decorated Cu2O nanocube catalysts with enhanced CO2 electroreduction toward liquid products. Angew Chem Int Ed 60:7426–7435

    Article  CAS  Google Scholar 

  41. Ma W, **e S, Liu T, Fan Q, Ye J, Sun F, Jiang Z, Zhang Q, Cheng J, Wang Y (2020) Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat Catal 3:478–487

    Article  CAS  Google Scholar 

  42. Zhang B, Zhang J, An P, Su Z, Wan Q, Tan X, Zheng L (2021) Steering CO2 electroreduction toward methane or ethylene production. Nano Energy 88:106239

    Article  CAS  Google Scholar 

  43. Kong X, Wang C, Zheng H, Geng Z, Bao J, Zeng J (2021) Enhance the activity of multi-carbon products for Cu via P do** towards CO2 reduction. Sci China Chem 64:1096–1102

    Article  CAS  Google Scholar 

  44. Jiang K, Men Y, Liu S, Wang J, An W, Yu H, Shin EW (2021) Highly stable and selective CoxNiyTiO3 for CO2 methanation: Electron transfer and interface interaction. J CO2 Utilization 53:101743

    Article  CAS  Google Scholar 

  45. Chai S, Men Y, Wang J, Liu S, Song Q, An W, Kolb G (2019) Boosting CO2 methanation activity on Ru/TiO2 catalysts by exposing (001) facets of anatase TiO2. J CO2 Utilization 33:242–252

    Article  CAS  Google Scholar 

  46. Wu X, Shi G (2005) Fabrication of a lotus-like micro-nanoscale binary structured surface and wettability modulation from superhydrophilic to superhydrophobic. Nanotechnology 16:2056–2060

    Article  CAS  PubMed  Google Scholar 

  47. Luo Y-K, Song F, Wang X-L, Wang Y-Z (2017) Pure copper phosphate nanostructures with controlled growth: a versatile support for enzyme immobilization. CrystEngComm 19:2996–3002

    Article  CAS  Google Scholar 

  48. Li X, Li L, **a Q, Hong S, Hao L, Robertson AW, Zhang H, Benedict Lo TW, Sun Z (2022) Selective electroreduction of CO2 and CO to C2H4 by synergistically tuning nanocavities and the surface charge of copper oxide. ACS Sustain Chem Eng 10:6466–6475

    Article  CAS  Google Scholar 

  49. Liang H-Q, Zhao S, Hu X-M, Ceccato M, Skrydstrup T, Daasbjerg K (2021) Hydrophobic copper interfaces boost electroreduction of carbon dioxide to ethylene in water. ACS Catal 11:958–966

    Article  CAS  Google Scholar 

  50. Qiu Y-L, Zhong H-X, Zhang T-T, Xu W-B, Li X-F, Zhang H-M (2017) Copper Electrode fabricated via pulse electrodeposition: toward high methane selectivity and activity for CO2 electroreduction. ACS Catal 7:6302–6310

    Article  CAS  Google Scholar 

  51. Lee S, Kim D, Lee J (2015) Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced bi-phasic Cu2O-Cu catalyst. Angew Chem 54:14701–14705

    Article  CAS  Google Scholar 

  52. Mistry H, Varela AS, Bonifacio CS, Zegkinoglou I, Sinev I, Choi YW, Kisslinger K, Stach EA, Yang JC, Strasser P, Cuenya BR (2016) Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat Commun 7:12123

    Article  PubMed Central  PubMed  Google Scholar 

  53. Gao D, Zegkinoglou I, Divins NJ, Scholten F, Sinev I, Grosse P (2017) Roldan Cuenya, plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 11:4825–4831

    Article  CAS  PubMed  Google Scholar 

  54. Lee SY, Jung H, Kim NK, Oh HS, Min BK, Hwang YJ (2018) Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J Am Chem Soc 140:8681–8689

    Article  CAS  PubMed  Google Scholar 

  55. Wu YA, McNulty I, Liu C, Lau KC, Liu Q, Paulikas AP, Sun C-J, Cai Z, Guest JR, Ren Y, Stamenkovic V, Curtiss LA, Liu Y, Rajh T (2019) Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat Energy 4:957–968

    Article  CAS  Google Scholar 

  56. Wei B, **ong Y, Zhang Z, Hao J, Li L, Shi W (2021) Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet. Appl Catal B 283:119646

    Article  CAS  Google Scholar 

  57. Wang H, Tzeng YK, Ji Y, Li Y, Li J, Zheng X, Yang A, Liu Y, Gong Y, Cai L, Li Y, Zhang X, Chen W, Liu B, Lu H, Melosh NA, Shen ZX, Chan K, Tan T, Chu S, Cui Y (2020) Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat Nanotechnol 15:131–137

    Article  CAS  PubMed  Google Scholar 

  58. Li F, Thevenon A, Rosas-Hernandez A, Wang Z, Li Y, Gabardo CM, Ozden A, Dinh CT, Li J, Wang Y, Edwards JP, Xu Y, McCallum C, Tao L, Liang ZQ, Luo M, Wang X, Li H, O’Brien CP, Tan CS, Nam DH, Quintero-Bermudez R, Zhuang TT, Li YC, Han Z, Britt RD, Sinton D, Agapie T, Peters JC, Sargent EH (2020) Molecular tuning of CO2-to-ethylene conversion. Nature 577:509–513

    Article  CAS  PubMed  Google Scholar 

  59. Guo P-P, He Z-H, Yang S-Y, Wang W, Wang K, Li C-C, Wei Y-Y, Liu Z-T, Han B (2022) Electrocatalytic CO2 reduction to ethylene over ZrO2/Cu-Cu2O catalysts in aqueous electrolytes. Green Chem 24:1527–1533

    Article  CAS  Google Scholar 

  60. Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5:7050

    Article  CAS  Google Scholar 

  61. Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, **e Y (2016) Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529:68–71

    Article  CAS  PubMed  Google Scholar 

  62. Tan D, Cui C, Shi J, Luo Z, Zhang B, Tan X, Han B, Zheng L, Zhang J, Zhang J (2019) Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. Nano Res 12:1167–1172

    Article  CAS  Google Scholar 

  63. Li X, Bi W, Chen M, Sun Y, Ju H, Yan W, Zhu J, Wu X, Chu W, Wu C, **e Y (2017) Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J Am Chem Soc 139:14889–14892

    Article  CAS  PubMed  Google Scholar 

  64. Wu Y, Jiang Z, Lu X, Liang Y, Wang H (2019) Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575:639–642

    Article  CAS  PubMed  Google Scholar 

  65. Ren D, Deng Y, Handoko AD, Chen CS, Malkhandi S, Yeo BS (2015) Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal 5:2814–2821

    Article  CAS  Google Scholar 

  66. Zhuang T-T, Liang Z-Q, Seifitokaldani A, Li Y, De Luna P, Burdyny T, Che F, Meng F, Min Y, Quintero-Bermudez R, Dinh CT, Pang Y, Zhong M, Zhang B, Li J, Chen P-N, Zheng X-L, Liang H, Ge W-N, Ye B-J, Sinton D, Yu S-H, Sargent EH (2018) Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat Catal 1:421–428

    Article  CAS  Google Scholar 

  67. Birdja YY, Pérez-Gallent E, Figueiredo MC, Göttle AJ, Calle-Vallejo F, Koper MTM (2019) Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy 4:732–745

    Article  CAS  Google Scholar 

  68. Chernyshova IV, Somasundaran P, Ponnurangam S (2018) On the origin of the elusive first intermediate of CO2 electroreduction. Proc Natl Acad Sci USA 115:E9261–E9270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (22179081, 22076117), State Key Laboratory of Heavy Oil Processing, and Science and Technology Commission of Shanghai Municipality (18030501100, 20ZR1422500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Men or Tamerlan T. Magkoev.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Men, Y., Wu, B. et al. Highly Ethylene-Selective Electroreduction CO2 Over Cu Phosphate Nanostructures with Tunable Morphology. Top Catal 66, 1527–1538 (2023). https://doi.org/10.1007/s11244-023-01783-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01783-x

Keywords

Navigation