Log in

Process Improvements in Methanol Oxidation to Formaldehyde: Application and Catalyst Development

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Compared with oxide catalysts for many other selective oxidation and ammoxidation processes, the commercial iron molybdate type catalyst for the oxidation of methanol to formaldehyde has an outstanding performance giving a selectivity in the range 92–95 % to formaldehyde at almost complete methanol conversion. In this presentation an overview is given describing the historical and present developments that have made possible a fourfold increase of the productivity per reactor tube and day since the late 1950s, which has been achieved without any change of the basic chemical composition of the catalyst. The effects on steam production and power consumption are described as well. Moreover, some results on novel Fe-(V)–Mo–O catalysts with spinel-type structures are described, showing good stability in methanol oxidation. Compared with conventional catalysts, the spinel-type catalysts have a larger number of reoxidation sites (Fe) per active Mo atom and allow the metals to change valence retaining the structure type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Reuss G, Disteldorf W, Gamer AO, Hilt A (2012) Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. doi:10.1002/14356007.a11_619

    Google Scholar 

  2. Chrichton B (2006) In: Informally speaking (newsletter from Formox), spring/summer 2006, pp 2–8. http://www.formox.com

  3. Chrichton B (2013) In: Informally speaking (newsletter from Formox), spring/summer 2013, p 4. http://www.formox.com

  4. Adkins H, Peterson WR (1931) J Am Chem Soc 53:1512–1520

    Article  CAS  Google Scholar 

  5. Häggblad R, Wagner JB, Hansen S, Andersson A (2008) J Catal 258:345–355

    Article  Google Scholar 

  6. Rosowski F, Altwasser S, Dobner CK, Storck S, Zühlke J, Hibst H (2010) Catal Today 157:339–344

    Article  CAS  Google Scholar 

  7. Arntz D, Fischer A, Höpp M, Jacobi S, Sauer J, Ohara T, Sato T, Shimizu N, Schwind H (2012) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. doi:10.1002/14356007.a01_149.pub2

    Google Scholar 

  8. Grasselli RK, Lugmair CG, Volpe AF Jr (2011) Top Catal 54:595–604

    Article  CAS  Google Scholar 

  9. Rebsdat S, Mayer D (2012) Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. doi:10.1002/14356007.a10_117

    Google Scholar 

  10. Cavani F (2010) Catal Today 157:8–15

    Article  CAS  Google Scholar 

  11. Liu Y-M, Feng W-L, Li T-C, He H-Y, Dai W-L, Huang W, Cao Y, Fan K-N (2006) J Catal 239:125–136

    Article  CAS  Google Scholar 

  12. Lintz H-G, Müller SP (2009) Appl Catal A 357:178–183

    Article  CAS  Google Scholar 

  13. Grasselli RK, Buttrey DJ, DeSanto P Jr, Burrington JD, Lugmair CG, Volpe AF Jr, Weingand T (2004) Catal Today 91–92:251–258

    Article  Google Scholar 

  14. Andersson A, Hernelind M, Augustsson O (2006) Catal Today 112:40–44

    Article  CAS  Google Scholar 

  15. Yu W, Zhang T, Zhang J, Qiao X, Yang L, Liu Y (2006) Mater Lett 60:2998–3001

    Article  CAS  Google Scholar 

  16. Häggblad R, Hansen S, Wallenberg LR, Andersson A (2010) J Catal 276:24–37

    Article  Google Scholar 

  17. Machiels CJ, Sleight AW (1982) In: Barry HF, Mitchell PCH (eds) Proceedings of the 4th international conference on the chemistry and uses of molybdenum, Golden, Colorado, Climax Molybdenum Co, Ann Arbor, pp 411–414

  18. Deshmukh SARK, van Sint Annaland M, Kuipers JAM (2005) Appl Catal A 289:240–255

    Article  CAS  Google Scholar 

  19. Callahan JL, Grasselli RK (1963) AIChE J 9:755–760

    Article  CAS  Google Scholar 

  20. Söderhjelm E, House MP, Cruise N, Holmberg J, Bowker M, Bovin J-O, Andersson A (2008) Top Catal 50:145–155

    Article  Google Scholar 

  21. Wachs IE, Briand LE (2007) US Patent 7 193 117 B2, assigned to Lehigh University, Bethlehem, PA (US)

  22. Maliński R (1976) React Kinet Catal Lett 5:265–271

    Article  Google Scholar 

  23. Maliński R, Akimoto M, Echigoya E (1976) J Catal 44:101–106

    Article  Google Scholar 

  24. Briand LE, Jehng J-M, Cornaglia L, Hirt AM, Wachs IE (2003) Catal Today 78:257–268

    Article  CAS  Google Scholar 

  25. Isaguliants GV, Belomestnykh IP (2005) Catal Today 100:441–445

    Article  CAS  Google Scholar 

  26. Ivanov K, Litcheva P, Klissurski D (1992) Collect Czech Chem Commun 57:2539–2547

    Article  CAS  Google Scholar 

  27. Ivanov K, Krustev S, Litcheva P (1998) J Alloys Comp 279:132–135

    Article  CAS  Google Scholar 

  28. Machiels CJ, Chowdhry U, Harrison WTA, Sleight AW (1985) ACS Symp Ser 279:103–119

    Article  CAS  Google Scholar 

  29. Burriesci N, Garbassi F, Petrera M, Petrini G, Pernicone N (1980) Stud Surf Sci Catal 6:115–126

    Article  CAS  Google Scholar 

  30. Häggblad R, Massa M, Andersson A (2009) J Catal 266:218–227

    Article  Google Scholar 

  31. Massa M, Häggblad R, Andersson A (2011) Top Catal 54:685–697

    Article  CAS  Google Scholar 

  32. Massa M, Häggblad R, Hansen S, Andersson A (2011) Appl Catal A 408:63–72

    Article  CAS  Google Scholar 

  33. Popov BI, Bibin VN, Boreskov GK (1976) Kinet Katal 17:371–377

    CAS  Google Scholar 

  34. Grasselli RK (1985) Appl Catal 15:127–139

    Article  CAS  Google Scholar 

  35. Andersson A, Häggblad R. (2011) International Patent Application WO 2011/093763 A1, applicant FORMOX AB, Perstorp

  36. Andersson A, Häggblad R. (2015) US Patent 9 056 304 B2, assigned to Johnson Matthey Formox AB, Perstorp

Download references

Acknowledgments

The XANES measurements were made at beamline I811, MAX-lab synchrotron radiation source, Lund University, Sweden. Funding for the beamline I811 project was kindly provided by The Swedish Research Council and The Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Häggblad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersson, A., Holmberg, J. & Häggblad, R. Process Improvements in Methanol Oxidation to Formaldehyde: Application and Catalyst Development. Top Catal 59, 1589–1599 (2016). https://doi.org/10.1007/s11244-016-0680-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0680-1

Keywords

Navigation