Log in

Chemoselective Photocatalytic Reduction of Furfural to Furfuryl Alcohol Under the Influence of Visible Light with the Participation of Nanocrystalline Carbon Nitride and Palladium Co-Catalysts

  • Published:
Theoretical and Experimental Chemistry Aims and scope

It is established that crystalline graphite-like carbon nitride (CGCN) exhibits high photocatalytic activity in the process of chemoselective reduction of furfural to furfuryl alcohol in the presence of co-catalysts under the action of visible light by electron-donating substrates, such as methanol/water and ethanol/water, in an acidic medium. When palladium chloride additives are introduced into the reaction mixture, the rate of the process is higher than with the participation of the Pd/SiO2 co-catalyst. This phenomenon may be due to the in situ formation of the CGCN/Pd0 composite photocatalyst in the presence of PdCl2, where the photogenerated charges are better separated than in the CGCN-Pd/SiO2 system. The effective quantum yield of furfural reduction is 56% at λirr = 405 nm) under optimal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. C. B. T. L. Lee and T. Y. Wu, Renew. Sust. Energ. Rev., 137, 110172 (2021), https://doi.org/10.1016/j.rser.2020.110172.

    Article  CAS  Google Scholar 

  2. Y. Y. Wang, D. Rodriguez-Padron, and C. Len, Catalysts, 9, No. 10, 796 (2019), https://doi.org/10.3390/catal9100796.

    Article  CAS  Google Scholar 

  3. A. S. May and E. J. Biddinger, ACS Catal., 10, No. 5, 3212-3221 (2020), https://doi.org/10.1021/acscatal.9b05531.

    Article  CAS  Google Scholar 

  4. G. Zhang and R. Su, Chem. Eur. J., 29, No. 35, e202300882 (2023), https://doi.org/10.1002/chem.202300882.

    Article  CAS  PubMed  Google Scholar 

  5. K. Nakanishi, A. Tanaka, K. Hashimoto, and H. Kominami, Chem. Lett., 47, No. 2, 254-256 (2017), https://doi.org/10.1246/cl.171053.

    Article  CAS  Google Scholar 

  6. S. Lv, H. Liu, J. Zhang, et al., J. Energy Chem., 73, No. 10, 259-267 (2022), DOI: https://doi.org/10.1016/j.jechem.2022.06.012.

    Article  CAS  Google Scholar 

  7. M. Zhang and Z. Li, ACS Sustain. Chem. Eng., 7, No. 13, 11485-11492 (2019), https://doi.org/10.1021/acssuschemeng.9b01305.

    Article  CAS  Google Scholar 

  8. Y. Shi, T. Wu, Z. Wang, et al., Appl. Surf. Sci., 616, 156553 (2023), https://doi.org/10.1016/j.apsusc.2023.156553.

    Article  CAS  Google Scholar 

  9. J. Wen, J. **e, X. Chen, and X. Li, Appl. Surf. Sci., 391, 72-123 (2017), https://doi.org/10.1016/j.apsusc.2016.07.030.

    Article  CAS  Google Scholar 

  10. O. L. Stroyuk, A. E. Raevskaya, and S. Ya. Kuchmy, Theor. Exp. Chem., 54, No. 1, 1-35 (2018), DOI: https://doi.org/10.1007/s11237-018-9541-2.

    Article  CAS  Google Scholar 

  11. J. Wang, P. Kumar, H. Zhao, et al., Green Chem., 23, No. 19, 7435-7457 (2021), https://doi.org/10.1039/D1GC02307A.

    Article  CAS  Google Scholar 

  12. J. Ma, K. Liu, X. Yang, et al., ChemSusChem., 14, No. 22, 4903-4922 (2021), https://doi.org/10.1002/cssc.202101173.

    Article  CAS  PubMed  Google Scholar 

  13. E. I. Garcia-Lopez, L. Palmisano, and G. Marci, Chem. Eng., 7, No. 1, 11 (2023), https://doi.org/10.3390/chemengineering7010011.

    Article  CAS  Google Scholar 

  14. Y. Guo and J. Chen, RSC Adv., 6, No. 104, 101968-101973 (2016), DOI:https://doi.org/10.1039/c6ra19153c.

    Article  CAS  Google Scholar 

  15. S. Dong, M. Chen, J. Zhang, et al., Green Energy Environ., 6, No. 5, 715-724 (2021), https://doi.org/10.1016/j.gee.2020.07.004.

    Article  CAS  Google Scholar 

  16. L. Lin, H. Ou, Y. Zhang, and X. Wang, ACS Catal., 6, No. 6, 3921-3931 (2016), https://doi.org/10.1021/acscatal.6b00922.

    Article  CAS  Google Scholar 

  17. H. Ou, L. Lin, Y. Zheng, et al., Adv. Mater., 29, No. 22, 1700008 (2017), https://doi.org/10.1002/adma.201700008.

    Article  CAS  Google Scholar 

  18. L. Lin, W. Ren, C. Wang, et al., Appl. Catal. B., 231, 234-241 (2018), https://doi.org/10.10167j.apcatb.2018.03.009 .

  19. N. Andriushyna, V. Shvalagin, A. Korzhak, et al., Appl. Surf. Sci., 475, 348-354 (2019), https://doi.org/10.1016/j.apsusc.2018.12.287.

    Article  CAS  Google Scholar 

  20. V. V. Shvalagin, G. V. Korzhak, S. Ya. Kuchmiy, et al., J. Photochem. Photobiol. A., 390, 112295 (2020), https://doi.org/10.1016/jjphotochem.2019.112295.

    Article  CAS  Google Scholar 

  21. V. V. Shvalagin, G. V. Korzhak, S. Ya. Kuchmiy, and M. A. Skoryk, Theor. Exp. Chem., 57, No. 3, 199-204 (2021), https://doi.org/10.1007/s11237-021-09688-0.

    Article  CAS  Google Scholar 

  22. X. Fan, Z. **ng, Z. Shu, et al., RSC Adv., 5, No. 11, 8323-8328 (2015), https://doi.org/10.1039/C4RA16362A.

    Article  CAS  Google Scholar 

  23. N. Cheng, P. Jiang, Q. Liu, et al., Analyst, 139, No. 20, 5065-5068 (2014), https://doi.org/10.1039/C4AN00914B.

    Article  CAS  PubMed  Google Scholar 

  24. G. Zhang, L. Lin, G. Li, et al., Angew. Chem. Ed., 57, No. 30, 9372-9376. https://doi.org/10.1002/anie.201804702.

  25. J. Bi, L. Zhu, J. Wu, et al., Appl. Organomet. Chem., 33, No. 10, e5163.

  26. G. Zhang, G. Li, Z. Lan, et al., Angew. Chem., 129, No. 43, 13630-13634 (2017), https://doi.org/10.1002/ange.201706870.

    Article  Google Scholar 

  27. V. Shvalagin, S. Kuchmiy, M. Skoryk, et al., Mater. Sci. Eng. B., 271, 115304 (2021), https://doi.org/10.1016/j.mseb.2021.115304.

    Article  CAS  Google Scholar 

  28. S. K. Green, J. Lee, H. J. Kim, et al., Green Chem., 15, No. 7, 1869-1879 (2013), https://doi.org/10.1039/C3GC00090G.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Kuchmiy.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 59, No. 4, pp. 234-239, July-August, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korzhak, G.V., Stara, T.R., Kutsenko, O.S. et al. Chemoselective Photocatalytic Reduction of Furfural to Furfuryl Alcohol Under the Influence of Visible Light with the Participation of Nanocrystalline Carbon Nitride and Palladium Co-Catalysts. Theor Exp Chem 59, 268–275 (2023). https://doi.org/10.1007/s11237-024-09785-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-024-09785-w

Keywords

Navigation