Log in

Obtaining of Luminescent Sulfur Nanoparticles in the L-Cysteine–Citrate–Sodium Sulfide System

  • Published:
Theoretical and Experimental Chemistry Aims and scope

An obtaining of sulfur nanoparticles by hydrothermal method in aqueous solution of L-cysteine, citrate ions, and sodium sulfide is proposed. The optical properties of the obtained sulfur nanoparticles have been studied by UV-Visible absorption and photoluminescence spectroscopies. Transmission and scanning electron microscopies and atomic force microscopy indicate that sulfur nanoparticles are quasi-spherical, their diameter depends on heat treatment time reaching an average size of 28 nm after 8 h of heating at 378 K. The nanoparticles exhibit photoluminescence in the range from 388 to 515 nm depending on the excitation wavelength. The obtained colloid systems have lasting sedimentation stability and high photoluminescence intensity, which make them promising for further wide application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. S. Shankar, L. Jaiswal, and J.-Wh. Rhim, Crit. Rev. Environ. Sci. Technol., 51, No. 20, 2329-2356 (2020).

    Article  Google Scholar 

  2. X.-Y. **e, W.-J. Zheng, Y. Bai, and J. Liu, Mater. Lett., 63, No. 16, 1374-1376 (2009).

    Article  CAS  Google Scholar 

  3. R. G. Chaudhuri and S. Paria, J. Colloid Interface Sci., 343, No. 2, 439-446 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Y. Guo, J. Zhao, S. Yang, K. Yu, et al., Powder Technol., 162, No. 2, 83-86 (2006).

    Article  CAS  Google Scholar 

  5. A. S. Deshpande, R. B. Khomane, B. K. Vaidya, et al., Nanoscale Res. Lett., 3, No. 6, 221-229 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  6. M. Shamsipur, S. M. Pourmortazavi, M. Roushani, et al., Microchim. Acta., 173, Nos. 3-4, 445-451 (2011).

    Article  CAS  Google Scholar 

  7. X. Z. Cheng, K. Cheng, J. Liu, and X. F. Sun, Mater. Sci. Forum., 675-677, 279-282 (2011).

    Article  Google Scholar 

  8. A. M. Awwad, N. M. Salem, and A. O. Abdeen, Adv. Mater. Lett., 6, No. 5, 432-435 (2015).

    Article  CAS  Google Scholar 

  9. V. J. Kouzegaran and K. Farhadi, Micro Nano Lett., 12, No. 5, 329-334 (2017).

    CAS  Google Scholar 

  10. P. Paralikar and M. Rai, IET Nanobiotechnol., 12, No. 1, 25-31 (2018).

    Article  Google Scholar 

  11. N. M. Salem, L. S. Albanna, A. M. Awwad, et al., J. Agric. Sci., 8, No. 1, 188 (2015).

    Google Scholar 

  12. Sh. Li, D. Chen, F. Zheng, et al., Adv. Funct. Mater., 24, No. 45, 7133-7138 (2014).

    Article  CAS  Google Scholar 

  13. L. Shen, H. Wang, Sh. Liu, et al., J. Am. Chem. Soc., 140, No. 25, 7878-7884 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. H. Wang, Zh. Wang, Y. **ong, et al., Angew. Chem. Int. Ed., 58, No. 21, 7040-7044 (2019).

    Article  CAS  Google Scholar 

  15. Y. Song, J. Tan, G. Wang, et al., Chem. Sci., 3, No. 11, 772-777 (2020).

    Article  Google Scholar 

  16. Ch. Zhang, P. Zhang, X. Ji, et al., Chem. Commun., 55, 13004-13007 (2019).

    Article  CAS  Google Scholar 

  17. L. **ao, Q. Du, Yi Huang, et al., ACS Appl. Nano Mater., 2, No. 10, 6622-6628 (2019).

  18. Sh. Liu, H. Wang, A. Feng, et al., Nanoscale Adv., 3, 4271-4275 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. P. Gao, G. Wang, and L. Zhou, ChemPhotoChem., 4, No. 11, 5235-5244 (2020).

    Article  CAS  Google Scholar 

  20. Y. Sheng, Zh. Huang, Qi Zhong, et al., Nanoscale, 13, 2519-2526 (2021).

  21. K. Ning, Y. Sun, J. Liu, et al., Molecules, 27, No. 9, 2882 (2022).

    Article  Google Scholar 

  22. D. Xu, R. Jiao, Y. Sun, et al., Nanoscale Res. Lett., 11, No. 444, 1-10 (2016).

    Google Scholar 

  23. X.-L. Liu, Y.-J. Zhu, Q. Zhang, et al., Mater. Res. Bull., 47, No. 12, 4263-4265 (2012).

    Article  CAS  Google Scholar 

  24. H.-T. Liu, J.-S. Zhong, X.-J. Liang, and J.-F. Zhang, J. Inorg. Mater., 26, No. 11, 1221-1226 (2011).

    Article  CAS  Google Scholar 

  25. Zh. Wang, Ch. Zhang, H. Wang, et al., Angew. Chem. Int. Ed., 59, No. 25, 9997-10002 (2020).

    Article  CAS  Google Scholar 

  26. A. Misak, L. Kurakova, Ed. Goffa, et al., Molecules, 24, No. 6, 1148 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Pylypko.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 59, No. 2, pp. 108-113, March-April, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pylypko, V.G., Fochuk, P.M. Obtaining of Luminescent Sulfur Nanoparticles in the L-Cysteine–Citrate–Sodium Sulfide System. Theor Exp Chem 59, 120–125 (2023). https://doi.org/10.1007/s11237-023-09771-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-023-09771-8

Keywords

Navigation