Log in

Enhancing physical layer security via information hiding and chaotic frequency-hop** signal

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

With the development of super computation ability and invention of quantum computer, safeguarding network layer data confidentiality by computation based encryption method suffers great impact. As a result, people pay more attention to safeguarding data confidentiality in physical layer of wireless satellite communication system. In this paper, a groundbreaking method for enhancing physical layer security (PLS) by information hiding technology is proposed, that is, embedding secret information into chaotic frequency-hop** signal by multilevel frequency shift keying (MFSK) modulation. First, the secret information to be transmitted is encrypted with chaotic binary sequence. Secondly, according to frequency-hop** pattern and chaotic address sequence, select suitable modulation order and specific frequency point corresponding to each encrypted data block. Finally, the encrypted information is embedded into frequency-hop** Sine signal by MFSK modulation. Experimental results indicate that the proposed scheme is robust against various jamming attacks, such as power attenuation, noise adding, single-tone jamming, key exhaustive search, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Dong-Hyoun, N., Ki-Hong, P., Young-Chai, K., & Mohamed-Slim, A. (2022). Performance analysis of satellite communication systems with randomly located ground users. IEEE Transactions on Wireless Communications, 21(1), 621–634.

    Article  Google Scholar 

  2. Radhika, R., William, W. E., Fatemeh, A., Ramon, M. R. O., Frank, P., & Scott, C. B. (2016). Survey of inter-satellite communication for small satellite systems: Physical layer to network layer view. IEEE Communications Surveys & Tutorials, 18(4), 2442–2473.

    Article  Google Scholar 

  3. Yu, Z. Y., Gao, J. X., Li, B., Xu, H. Z., & Zhu, H. (2022). An efficient correlation-based reception scheme for satellite communications. IEEE Communications Letters, 26(5), 1111–1115.

    Article  Google Scholar 

  4. Qi, C. H., Yang, Y., Ding, R., **, S. C., & Liu, D. G. (2022). Multibeam satellite communications with energy efficiency optimization. IEEE Communications Letters, 26(4), 887–891.

    Article  Google Scholar 

  5. Yan, F. C., Liu, Y. L., Han, S., & Meng, W. X. (2020). A survey of physical layer security in space-air-ground communication and networks. Telecommunications Science, 9, 1–13.

    Google Scholar 

  6. Guo, K. F., An, K., Zhang, B. N., Huang, Y. Z., Tang, X. G., Zheng, G., & Theodoros, A. T. (2020). Physical layer security for multiuser satellite communication systems with threshold-based scheduling scheme. IEEE Transactions on Vehicular Technology, 69(5), 5129–5141.

    Article  Google Scholar 

  7. Lin, Z., Lin, M., Ouyang, J., Zhu, W. P., Panagopoulos, A. D., & Alouini, M. S. (2019). Robust secure beamforming for multibeam satellite communication systems. IEEE Transactions on Vehicular Technology, 68(6), 6202–6206.

    Article  Google Scholar 

  8. He, Q.H., Yuan, S., & Zhu, L.D. (2019). Modulation domain encrypted transmission based on chaotic sequence for satellite communication. In 2019 International Symposium on Advanced Electrical and Communication Technologies in Italy (ISAECT) (pp.1–6). IEEE.

  9. Wang, H.B., Da, X.Y., Luo, Z.K., Hu, H., Ni, L., & Pan, Y. (2019). Research on polarization-based secure satellite communications via DL-MPWFRFT. In 2019 International Conference on Electronic Information and Communication Technology in China (ICEICT) (pp.247–252). IEEE.

  10. Kundi, D. S., Khalid, A., Aziz, A., Wang, C. H., Neill, M., & Liu, W. Q. (2020). Resource-shared crypto-coprocessor of AES Enc/Dec with SHA-3. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(12), 4869–4882.

    Article  Google Scholar 

  11. Niu, Y. C., Zhang, J. W., Wang, A., & Chen, C. (2019). An efficient collision power attack on AES encryption in edge computing. IEEE Access, 7, 18734–18748.

    Article  Google Scholar 

  12. Breier, J., Jap, D., Hou, X. H., & Bhasin, S. (2020). On side channel vulnerabilities of bit permutations in cryptographic algorithms. IEEE Transactions on Information Forensics and Security, 15, 1072–1085.

    Article  Google Scholar 

  13. Yue, P.Y., An, J.P., Zhang, J.K., Pan, G.F., Wang, S., **ao, P., & Hanzo, L. (2022). On the security of LEO satellite communication systems: vulnerabilities, countermeasures, and future trends. https://arxiv.org/abs/2201.03063.

  14. Wu, Y. P., Khisti, A., **ao, C. S., Caire, G., Wong, K. K., & Gao, X. Q. (2018). A survey of physics layer security techniques for 5G wireless networks and challenges ahead. IEEE Journal on Selected Areas in Communication, 36(4), 679–695.

    Article  Google Scholar 

  15. Albehadili, A., Shamaileh, K. A. A., Javaid, A. Y., & Devabhakuni, V. K. (2020). Link-Signature-Based discriminatory channel estimation (LS-DCE) for physical layer security in stationary and mobile OFDM transceivers. IEEE Transactions on Vehicular Technology, 69(8), 8119–8131.

    Article  Google Scholar 

  16. Wang, D., Bai, B., Zhao, W. B., et al. (2019). A survey of optimization approaches for wireless physical layer security. IEEE Communications Surveys & Tutorials, 21(2), 1878–1911.

    Article  Google Scholar 

  17. Wyner, A. D. (1975). The wire-tap channel. Bell System Technology Journal, 54(8), 1355–1387.

    Article  Google Scholar 

  18. Baldi, M., Ricciutelli, G., Maturo, N., Chiaraluce, F. (2015). Performance assessment and design of finite length LDPC codes for the Gaussian wiretap channel. In Proceedings of International Conference on Communications Workshop (ICCW), (pp.435–440). IEEE.

  19. Ahmed, A., Emad, A. (2022). A secure turbo codes design on physical layer security based on interleaving and puncturing. In 96 th Vehicular Technology Conference (VTC2022-Fall), (pp.1–7). IEEE.

  20. Nooraiepour, A., & Duman, T. M. (2017). Randomized convolutional codes for the wiretap channel. IEEE Transactions on Wireless Communications, 65(8), 3442–3452.

    Google Scholar 

  21. Alqahtani, A., Alsusa, E., Al-Dweik, A. (2022). Outage probability of indoor-outdoor C-NOMA enabled UAV-relay over κμ fading. In 96th Vehicular Technology Conference (VTC2022-Fall), (pp.1–6). IEEE.

  22. Guo, K., An, K., Zhang, B., et al. (2018). Physical layer security for hybrid satellite terrestrial relay networks with joint relay selection and user scheduling. IEEE Access, 6(2), 55815–55827.

    Article  Google Scholar 

  23. Sagir, B., Aydin, E., & Ilhan, H. (2023). Deep-learning assisted IoT based RIS for cooperative communications. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2023.3239818

    Article  Google Scholar 

  24. Bankey, V., & Upadhyay, P. K. (2019). Physical layer security for multiuser multirelay hybrid satellite-terrestrial relay networks. IEEE Transactions on Vehicular Technology, 68(3), 2488–2501.

    Article  Google Scholar 

  25. Salari, S., & Chan, F. (2023). Maximizing the sum-rate of secondary cognitive radio networks by jointly optimizing beamforming and energy harvesting time. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2023.3238347

    Article  Google Scholar 

  26. Altalbe, A. A., Khan, M. N., & Tahir, M. (2023). Error analysis of free space communication system using machine learning. IEEE Access, 11, 7195–7207.

    Article  Google Scholar 

  27. Lu, W.X., Jiang, Y.W., Yin, C.Y., et al. (2017). Security beamforming algorithms in multibeam satellite systems. In Proceedings of 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), (pp.1272–1277). IEEE.

  28. Ma, D.T., Liu, X.R., Wang, J.X., et al. (2015). On the performance indexes of physical layer security for multi-beam satellite networks. In Proceedings of International Conference on Wireless Communications & Signal Processing, (pp.1–6). IEEE.

  29. Althunibat, S., Sucasas, V., & Rodriguez, J. (2017). A physical-layer security scheme by phase-based adaptive modulation. IEEE Transactions on Vehicular technology, 66(11), 9931–9942.

    Article  Google Scholar 

  30. Wang, W. Q., & Zheng, Z. (2018). Hybrid MIMO and phased-array directional modulation for physical layer security in mmWave wireless communications. IEEE Journal on Selected Areas in Communication, 36(7), 1383–1396.

    Article  Google Scholar 

  31. Yang, Y. L., & Guizani, M. (2018). Map**-varied spatial modulation for physical layer security: Transmission strategy and secrecy Rate. IEEE Journal on Selected Areas in Communication, 36(4), 887–889.

    Article  Google Scholar 

  32. Liu, F., Wang, L., **e, J., Wang, Y. X., & Zhang, Z. L. (2019). MP-WFRFT and chaotic scrambling aided directional modulation technique for physical layer security Enhancement. IEEE Access, 7, 74459–74470.

    Article  Google Scholar 

  33. Panayirci, E., Yesilkaya, A., Cogalan, T., Vincent Poor, H., & Haas, H. (2020). Physical layer security with optical generalized space shift keying. IEEE Transactions on Communications, 68(5), 3042–3056.

    Article  Google Scholar 

  34. Ansari, O., Amin, M., Maqsood, M., Maud, A. R. M., & Farooq, M. (2020). Inter-subset hamming distance maximization for enhancing the physical layer security of antenna subset modulation. IEEE Access, 8, 221513–221524.

    Article  Google Scholar 

  35. Samara, L., Alabbasi, A. O., Gouissem, A., Hamila, R., & Al-Dhahir, N. (2021). A novel OFDM waveform with enhanced physical layer security. IEEE Communications Letters, 25(2), 387–391.

    Article  Google Scholar 

  36. Shimaponda-nawa, M., Kolade, O., & Cheng, L. (2022). Generalized permutation coded OFDM-MFSK in hybrid powerline and visible light communication. IEEE Access, 10, 20783–20792.

    Article  Google Scholar 

  37. Liu, W. L., Leng, H. S., Huang, C. K., & Chen, D. C. (2017). A block-based division reversible data hiding method in encrypted images. Symmetry, 9(308), 1–14.

    Google Scholar 

  38. Hamamreh, J. M., Furqan, H. M., & Arslan, H. (2019). Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey. IEEE Communications Surveys & Tutorials, 21(2), 1773–1828.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to all reviewers who helped him during the writing of this paper, and especial thanks to **Tian312 who shared the knowledge of random number performance test on the website of blog.csdn.net.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingQuan Fan.

Ethics declarations

Conflict of interest

The author declares that there are no conflict of interests, I do not have any possible conflicts of interest. The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, M. Enhancing physical layer security via information hiding and chaotic frequency-hop** signal. Telecommun Syst (2024). https://doi.org/10.1007/s11235-024-01146-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11235-024-01146-1

Keywords

Navigation