Log in

Distributed independent vector machine for big data classification problems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In recent years, various studies have been conducted on SVMs and their applications in different area. They have been developed significantly in many areas. SVM is one of the most robust classification and regression algorithms that plays a significant role in pattern recognition. However, SVM has not been developed significantly in some areas like large-scale datasets, unbalanced datasets, and multiclass classification. Efficient SVM training in large-scale datasets is of great importance in the big data era. However, as the number of samples increases, the time and memory required to train SVM increase, making SVM impractical even for a medium-sized problem. With the emergence of big data, this problem becomes more significant. This paper presents a novel distributed method for SVM training in which a very small subset of training samples is used for classification, which reduces the problem size and thus the required memory and computational resources. The solution of this problem almost converges to standard SVM. This method includes three steps: first, detecting a subset of distributed training samples, second, creating local models of SVM and obtaining partial vectors, and finally combining the partial vectors and obtaining the global vector and the final model. In addition, the datasets which suffer from unbalanced number of samples and tend to the majority class, the proposed method balances the samples of the two classes and it can be used in unbalanced datasets. The empirical results show that using this method is efficient for large-scale problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. https://sci2s.ugr.es/keel/datasets.php.

  2. http://archive.ics.uci.edu/.

  3. https://www.kaggle.com/datasets/.

References

  1. Dhamecha TI, Noore A, Singh R, Vatsa M (2019) Between-subclass piece-wise linear solutions in large scale kernel SVM learning. Pattern Recognit 95:173–190. https://doi.org/10.1016/j.patcog.2019.04.012

    Article  Google Scholar 

  2. Tsai CW, Lai CF, Chao HC, Vasilakos AV (2015) Big data analytics: a survey. J Big Data 2(1):21. https://doi.org/10.1186/s40537-015-0030-3

    Article  Google Scholar 

  3. Shen XJ, Mu L, Li Z, Wu HX, Gou JP, Chen X (2016) Large-scale support vector machine classification with redundant data reduction. Neurocomputing 172:189–197. https://doi.org/10.1016/j.neucom.2014.10.102

    Article  Google Scholar 

  4. Peng S, Hu Q, Dang J, Wang W (2020) Optimal feasible step-size based working set selection for large scale SVMs training. Neurocomputing 407:366–375. https://doi.org/10.1016/j.neucom.2020.05.054

    Article  Google Scholar 

  5. Sun BY, Huang DS, Fang HT (2005) Lidar signal denoising using least-squares support vector machine. IEEE Signal Process Lett 12(2):101–104. https://doi.org/10.1109/LSP.2004.836938

    Article  Google Scholar 

  6. Chen P, Wang B, Wong HS, Huang DS (2007) Prediction of protein B-factors using multi-class bounded SVM. Protein Peptide Lett 14(2):185–190. https://doi.org/10.2174/092986607779816078

    Article  Google Scholar 

  7. Liang X, Zhu L, Huang DS (2017) Multi-task ranking SVM for image cosegmentation. Neurocomputing 247:126–136. https://doi.org/10.1016/J.NEUCOM.2017.03.060

    Article  Google Scholar 

  8. Cervantes J, García Lamont F, López-Chau A, Rodríguez Mazahua L, Sergio Ruíz J (2015) Data selection based on decision tree for SVM classification on large data sets. Appl Soft Comput 37:787–798. https://doi.org/10.1016/J.ASOC.2015.08.048

    Article  Google Scholar 

  9. Naik VA, Desai AA (2017) Online handwritten Gujarati character recognition using SVM, MLP, and K-NN, 8th Int. Conf Comput Commun Netw Technol ICCCNT. https://doi.org/10.1109/ICCCNT.2017.8203926

    Article  Google Scholar 

  10. Bhowmik TK, Ghanty P, Roy A, Parui SK (2009) SVM-based hierarchical architectures for handwritten Bangla character recognition. Int J Doc Anal Recognit IJDAR 12:97–108. https://doi.org/10.1007/S10032-009-0084-X

    Article  Google Scholar 

  11. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A (2020) A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.10.118

    Article  Google Scholar 

  12. Gov I (2003) Sparseness of support vector machines Ingo Steinwart. J Mach Learn Res 4:1071–1105. https://doi.org/10.5555/945365.964289

    Article  Google Scholar 

  13. Zheng J, Shen F, Fan H, Zhao J (2013) An online incremental learning support vector machine for large-scale data. Neural Comput Appl 22(5):1023–1035. https://doi.org/10.1007/s00521-011-0793-1

    Article  Google Scholar 

  14. Pratama RFW, Purnami SW, Rahayu SP (2018) Boosting support vector machines for imbalanced microarray data. Proced Comput Sci 144:174–183. https://doi.org/10.1016/j.procs.2018.10.517

    Article  Google Scholar 

  15. Lee YJ and Mangasarian OL (2001) RSVM: Reduced support vector machines, pp 1–17, https://doi.org/10.1137/1.9781611972719.13

  16. Zhou L, Pan S, Wang J, Vasilakos AV (2017) Machine learning on big data: opportunities and challenges. Neurocomputing 237:350–361. https://doi.org/10.1016/j.neucom.2017.01.026

    Article  Google Scholar 

  17. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167. https://doi.org/10.1023/A:1009715923555

    Article  Google Scholar 

  18. Vapnik VN (2000) The nature of statistical learning theory. Springer New York. https://doi.org/10.1007/978-1-4757-3264-1

    Article  Google Scholar 

  19. Steinwart I (2004) Sparseness of support vector machines. J Mach Learn Res 4(6):1071–1105. https://doi.org/10.1162/1532443041827925

    Article  MathSciNet  Google Scholar 

  20. Li X, Cervantes J, Yu W (2010) A novel SVM classification method for large data sets, Proc—2010. IEEE Int Conf Granul Comput GrC 2010:297–302. https://doi.org/10.1109/GrC.2010.46

    Article  Google Scholar 

  21. Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425. https://doi.org/10.1109/72.991427

    Article  Google Scholar 

  22. Orabona F, Castellini C, Caputo B, Jie L, Sandini G (2010) On-line independent support vector machines. Pattern Recognit 43(4):1402–1412. https://doi.org/10.1016/j.patcog.2009.09.021

    Article  Google Scholar 

  23. Rojas-Dominguez A, Padierna LC, Carpio Valadez JM, Puga-Soberanes HJ, Fraire HJ (2017) Optimal hyper-parameter tuning of SVM classifiers with application to medical diagnosis. IEEE Access 6:7164–7176. https://doi.org/10.1109/ACCESS.2017.2779794

    Article  Google Scholar 

  24. Zhou S (2022) Sparse SVM for sufficient data reduction. IEEE Trans Pattern Anal Mach Intell 44(9):5560–5571. https://doi.org/10.1109/TPAMI.2021.3075339

    Article  Google Scholar 

  25. Dong JX, Krzyzak A, Suen CY (2005) Fast SVM training algorithm with decomposition on very large data sets. IEEE Trans Pattern Anal Mach Intell 27(4):603–618. https://doi.org/10.1109/TPAMI.2005.77

    Article  Google Scholar 

  26. Joachims T (2006) Training linear SVMs in linear time, Proc. ACM SIGKDD. Int Conf Knowl Discov Data Min 2006:217–226. https://doi.org/10.1145/1150402.1150429

    Article  Google Scholar 

  27. Graf HP, Cosatto E, Bottou L, Durdanovic I and Vapnik V (2005) Parallel support vector machines : the cascade SVM, Adv Neural Inf Process Syst, pp 521–528

  28. Do TN, Poulet F (2006) Classifying one billion data with a new distributed SVM algorithm. RIVF. 760:59–66. https://doi.org/10.1109/RIVF.2006.1696420

    Article  Google Scholar 

  29. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300. https://doi.org/10.1023/A:1018628609742

    Article  Google Scholar 

  30. Navia-Vázquez A, Gutiérrez-González D, Parrado-Hernández E, Navarro-Abellán JJ (2006) Distributed support vector machines. IEEE Trans Neural Netw 17(4):1091–1097. https://doi.org/10.1109/TNN.2006.875968

    Article  Google Scholar 

  31. Lu Y, Roychowdhury V, Vandenberghe L (2008) Distributed parallel support vector machines in strongly connected networks. IEEE Trans Neural Netw 19(7):1167–1178. https://doi.org/10.1109/TNN.2007.2000061

    Article  Google Scholar 

  32. Chang EY et al (2009) PSVM Parallelizing support vector machines on distributed computers. Adv Neural Inf Process Syst Proc Conf 2:1–8. https://doi.org/10.1007/978-3-642-20429-6_10

    Article  Google Scholar 

  33. Alham NK, Li M, Liu Y, Hammoud S (2011) A MapReduce-based distributed SVM algorithm for automatic image annotation. Comput Math with Appl 62(7):2801–2811. https://doi.org/10.1016/j.camwa.2011.07.046

    Article  Google Scholar 

  34. Guo W, Alham NK, Liu Y, Li M, Qi M (2016) A resource aware Mapreduce based parallel SVM for large scale image classifications. Neural Process Lett 44(1):161–184. https://doi.org/10.1007/s11063-015-9472-z

    Article  Google Scholar 

  35. You ZH, Yu JZ, Zhu L, Li S, Wen ZK (2014) A MapReduce based parallel SVM for large-scale predicting protein-protein interactions. Neurocomputing 145:37–43. https://doi.org/10.1016/j.neucom.2014.05.072

    Article  Google Scholar 

  36. Do TN and Poulet F (2017) Parallel learning of local SVM algorithms for classifying large datasets, in Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 10140 LNCS, pp 67–93. https://doi.org/10.1007/978-3-662-54173-9_4.

  37. Scardapane S, Fierimonte R, Di Lorenzo P, Panella M, Uncini A (2016) Distributed semi-supervised support vector machines. Neural Netw 80:43–52

    Article  Google Scholar 

  38. Liu Y, Xu Z, Li C (2018) Distributed online semi-supervised support vector machine. Inf Sci (Ny) 466:236–257. https://doi.org/10.1016/j.ins.2018.07.045

    Article  MathSciNet  Google Scholar 

  39. Doostmohammadian M, Aghasi A, Charalambous T, Khan UA (2022) Distributed support vector machines over dynamic balanced directed networks. IEEE Control Syst Lett 6:758–763. https://doi.org/10.1109/LCSYS.2021.3086388

    Article  MathSciNet  Google Scholar 

  40. Kashef R (2021) A boosted SVM classifier trained by incremental learning and decremental unlearning approach. Expert Syst Appl 167:114154. https://doi.org/10.1016/J.ESWA.2020.114154

    Article  Google Scholar 

  41. Laskar S and Adnan MA (2022) Fast support vector machine using singular value decomposition, Proc 2022 IEEE International Conference on Big Data, Big Data 2022, pp 1280–1285, https://doi.org/10.1109/BIGDATA55660.2022.10020978

  42. Patel D (2021) Quantile regression support vector machine (QRSVM) model for time series data analysis. Commun Comput Inf Sci 1374:65–74. https://doi.org/10.1007/978-981-16-0708-0_6/COVER

    Article  Google Scholar 

  43. Zanghirati G, Zanni L (2003) A parallel solver for large quadratic programs in training support vector machines. Parallel Comput 29(4):535–551. https://doi.org/10.1016/S0167-8191(03)00021-8

    Article  MathSciNet  Google Scholar 

  44. Eitrich T, Lang B (2006) On the optimal working set size in serial and parallel support vector machine learning with the decomposition algorithm. Conf Res Pract Inf Technol Ser 61:121–128

    Google Scholar 

  45. Serafini T, Zanni L and Zanghirati G (2005) Some improvements to a parallel decomposition technique for training support vector machines, in: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 3666 LNCS, pp 9–17. https://doi.org/10.1007/11557265_7

  46. Qiu S and Lane T (2005) Parallel computation of RBF kernels for support vector classifiers, In: Proceedings of the 2005 SIAM International Conference on Data Mining, SDM 2005, pp 334–345, https://doi.org/10.1137/1.9781611972757.30

  47. Li X, Cervantes J, Yu W (2012) Fast classification for large data sets via random selection clustering and support vector machines. Intell Data Anal 16(6):897–914. https://doi.org/10.3233/IDA-2012-00558

    Article  Google Scholar 

  48. Lee YJ, Huang SY (2007) Reduced support vector machines: a statistical theory. IEEE Trans Neural Netw 18(1):1–13. https://doi.org/10.1109/TNN.2006.883722

    Article  Google Scholar 

  49. Zhu F, Yang J, Ye N, Gao C, Li G, Yin T (2014) Neighbors’ distribution property and sample reduction for support vector machines. Appl Soft Comput J 16:201–209. https://doi.org/10.1016/j.asoc.2013.12.009

    Article  Google Scholar 

  50. Gärtner B, Welzl E (2001) A simple sampling lemma: analysis and applications in geometric optimization. Discret Comput Geom 25(4):569–590. https://doi.org/10.1007/s00454-001-0006-2

    Article  MathSciNet  Google Scholar 

  51. Loosli G, Canu S and Bottou L (2007) Training invariant support vector machines using selective sampling, Large Scale Kernel Mach, pp 301–320

  52. Balcázar JL, Dai Y, Tanaka J, Watanabe O (2008) Provably fast training algorithms for support vector machines. Theory Comput Syst 42(4):568–595. https://doi.org/10.1007/s00224-007-9094-6

    Article  MathSciNet  Google Scholar 

  53. Chang CC and Lee YJ (2004) Generating the reduced set by systematic sampling, Lect Notes Comput Sci Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics, vol 3177, pp 720–725, https://doi.org/10.1007/978-3-540-28651-6_107

  54. Chien LIJ, Chang CC, Lee YJ (2010) Variant methods of reduced set selection for reduced support vector machines. J Inf Sci Eng 26(1):183–196. https://doi.org/10.6688/JISE.2010.26.1.13

    Article  Google Scholar 

  55. Zain JM (2020) An alternative algorithm for classification large categorical dataset: k-mode clustering reduced support vector machine, Sersc Org, Accessed: 16

  56. Yin C, Zhu Y, Mu S and Tian S (2012) Local support vector machine based on cooperative clustering for very large-scale dataset, International Conference on Natural Computation, Icnc, pp 88–92, https://doi.org/10.1109/ICNC.2012.6234598

  57. Romero E, Barrio I and Belanche L (2007) Incremental and decremental learning for linear support vector machines, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 4668 LNCS, no PART 1, pp 209–218, https://doi.org/10.1007/978-3-540-74690-4_22

  58. Schölkopf B, Herbrich R and Smola AJ (2001) A generalized representer theorem, pp 416–426, https://doi.org/10.1007/3-540-44581-1_27

  59. Engel Y, Mannor S, Meir R (2004) The kernel recursive least-squares algorithm. IEEE Trans Signal Process 52(8):2275–2285. https://doi.org/10.1109/TSP.2004.830985

    Article  MathSciNet  Google Scholar 

  60. Platt JC (2021) Sequential minimal optimization: a fast algorithm for training support vector machines. Apr. 21, 1998. Accessed: Dec. 02

  61. Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK (2001) Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput 13(3):637–649. https://doi.org/10.1162/089976601300014493

    Article  Google Scholar 

  62. Drakonaki EE, Allen GM (2010) Spark: cluster computing withworking sets matei. Skeletal Radiol 39(4):391–396. https://doi.org/10.1007/s00256-009-0861-0

    Article  Google Scholar 

  63. Cao LJ et al (2006) Parallel sequential minimal optimization for the training of support vector machines. IEEE Trans Neural Netw 17(4):1039–1049. https://doi.org/10.1109/TNN.2006.875989

    Article  Google Scholar 

  64. Higham NJ (2011) Gaussian elimination. Wiley Interdiscip Rev Comput Stat 3(3):230–238. https://doi.org/10.1002/WICS.164

    Article  MathSciNet  Google Scholar 

  65. Althoen SC, McLaughlin R (1987) Gauss-Jordan reduction: a brief history. Am Math Mon 94(2):130. https://doi.org/10.2307/2322413

    Article  MathSciNet  Google Scholar 

  66. Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol TIST 2(3):1–27. https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  67. Razzaghi T, Roderick O, Safro I, Marko N (2016) Multilevel weighted support vector machine for classification on healthcare data with missing values. PLoS ONE 11(5):1–18. https://doi.org/10.1371/journal.pone.0155119

    Article  Google Scholar 

  68. Han J, Kamber M, Mining D (2006) Concepts and techniques. Morgan Kaufmann 340:94104–103205

    Google Scholar 

  69. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874. https://doi.org/10.1016/J.PATREC.2005.10.010

    Article  MathSciNet  Google Scholar 

  70. A study of cross-validation and bootstrap for accuracy estimation and model selection | Proceedings of the 14th international joint conference on Artificial intelligence, Vol 2 https://doi.org/10.5555/1643031.1643047

  71. Orriols-Puig A, Sastry K, Goldberg DE and Bernadó-Mansilla E (2006) Substructural surrogates for learning decomposable classification problems, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 4998 LNAI, pp 235–254, https://doi.org/10.1007/978-3-540-88138-4_14

  72. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701. https://doi.org/10.1080/01621459.1937.10503522

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. H. Almaspoor: wrote the main manuscript text A. A. Safaei: the main idea, revision of the manuscript A. Salajegheh and B. Minaei: revision of the manuscript.

Corresponding author

Correspondence to Ali A. Safaei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almaspoor, M.H., Safaei, A.A., Salajegheh, A. et al. Distributed independent vector machine for big data classification problems. J Supercomput 80, 7207–7244 (2024). https://doi.org/10.1007/s11227-023-05711-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-023-05711-4

Keywords

Navigation