Log in

Quantum mechanical modeling unveils the effect of substitutions on the activation barriers of the Diels–Alder reactions of an antiviral compound 7H-benzo[a]phenalene

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory has been utilized for exploring the mechanism of Diels–Alder reaction between 7H-benzo[a]phenalene and maleic anhydride. 7H-Benzo[a]phenalene is an antiviral compound, and information available about its cycloaddition reactions with possible reaction path and mechanism is scarce. In order to work on the synthesis of its further potential derivatives, the mechanism of its reaction with all aspects should be well understood. Five novel intermediates involved in this reaction are reported in this work. Diels–Alder reaction of maleic anhydride has found many applications in the synthesis of wide range of useful products. One of the major concerns of this work is to evaluate the consequences of introducing electron donating and electron withdrawing substituents on the reactivity of maleic anhydride towards 7H-benzo[a]phenalene. Thermodynamic parameters, activation parameters, energies of frontier orbitals, global reactivity indices and global electron density transfer (GEDT) have been determined for all the reactions. Fukui functions are computed for each reactant in order to identify the most reactive sites. All the reactions have been found to proceed via normal electron demand having polar nature. The substituents with opposite electronic properties were expected to affect the reactivity of dienophile in an inverse manner; however, the results are not according to this assumption. Rather, both kinds of substituents increased the activation barrier of the reaction. This behavior has been explained in the light of various parameters such as the stability of reacting species and gap of frontier molecular orbitals. Experimental studies reported previously are in agreement with these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All the relevant data and materials are available and can be provided as per requirement.

Code availability

Not applicable.

References

  1. Merzoud L, Guégan F, Chermette H, Morell C (2021) Understanding the intermolecular Diels-Alder cycloaddition promotion: activation strain model/energy decomposition analysis model and conceptual density functional theory viewpoints. J Comput Chem 42:1364–1372. https://doi.org/10.1002/jcc.26548

    Article  CAS  PubMed  Google Scholar 

  2. Samba WK, Tia R, Adei E (2021) Regio-, enantio-, peri-, and stereo-selectivities of the reactions of five-membered cyclodiene derivatives with itaconic anhydride toward the formation of norbornene lactones. J Phys Org Chem 34(2):e4132. https://doi.org/10.1002/poc.4132

    Article  CAS  Google Scholar 

  3. Khan TS, Gupta S, Ahmad M, Alam MI, Haider MA (2020) Effect of substituents and promoters on the Diels-Alder cycloaddition reaction in the biorenewable synthesis of trimellitic acid. RSC Adv 10(51):30656–30670. https://doi.org/10.1039/D0RA04318D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oluwasanmi A, Hoskins C (2021) Potential use of the Diels-Alder reaction in biomedical and nanomedicine applications. Int J Pharm 604:120727. https://doi.org/10.1016/j.ijpharm.2021.120727

    Article  CAS  PubMed  Google Scholar 

  5. Medrán NS, Dezotti F, Pellegrinet SC (2019) Remarkable reactivity of boron-substituted furans in the Diels-Alder reactions with maleic anhydride. Org Lett 21(13):5068–5072. https://doi.org/10.1021/acs.orglett.9b01662

    Article  CAS  PubMed  Google Scholar 

  6. Sultan MA, Karama U (2016) Substituent effects on regioselectivity of the Diels-Alder reactions: reactions of 10-allyl-1, 8-dichloroanthracene with 2-chloroacrylonitrile, 1-cyanovinyl acetate and phenyl vinyl sulfone. J Chem 2016:1–5. https://doi.org/10.1155/2016/3943060

    Article  CAS  Google Scholar 

  7. Rulíšek L, Šebek P, Havlas Z, Hrabal R, Čapek P, Svatoš A (2005) An experimental and theoretical study of stereoselectivity of furan-maleic anhydride and furan-maleimide Diels-Alder reactions. J Org Chem 70(16):6295–6302. https://doi.org/10.1021/jo050759z

    Article  CAS  PubMed  Google Scholar 

  8. Lording WJ, Fallon T, Sherburn MS, Paddon-Row MN (2020) The simplest Diels-Alder reactions are not endo-selective. Chem Sci 11(43):11915–11926. https://doi.org/10.1039/D0SC04553E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cole CJ, Fuentes L, Snyder SA (2020) Asymmetric pyrone Diels-Alder reactions enabled by dienamine catalysis. Chem Sci 11(8):2175–2180. https://doi.org/10.1039/C9SC05738B

    Article  CAS  Google Scholar 

  10. El Ghozlani M, Barhoumi A, Elkacmi R, Aitouna AO, Zeroual A, El Idrissi M (2020) Mechanistic study of hetero-Diels–Alder [4+ 2] cycloaddition reactions between 2-nitro-1H-pyrrole and isoprene. Chemistry Africa 3(4):901–909. https://doi.org/10.1007/s42250-020-00187-8

    Article  CAS  Google Scholar 

  11. Gara R, Zouaghi MO, L.M.H. ALshandoudi, Y. Arfaoui, (2021) DFT investigation of solvent, substituent, and catalysis effects on the intramolecular Diels-Alder reaction. J Mol Model 27(5):1–12. https://doi.org/10.1007/s00894-021-04729-w

    Article  CAS  Google Scholar 

  12. Yoshioka S, Aoyama H, Fujioka H, Arisawa M (2018) Cascade multiple Diels-Alder reactions of styrene derivatives with maleimide or maleic anhydride. J Org Chem 83(12):6599–6606. https://doi.org/10.1021/acs.joc.8b00890

    Article  CAS  PubMed  Google Scholar 

  13. Mojica M, Méndez F, Alonso JA (2016) The Diels-Alder cycloaddition reaction of substituted hemifullerenes with 1, 3-butadiene: effect of electron-donating and electron-withdrawing substituents. Molecules 21(2):200. https://doi.org/10.3390/molecules21020200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahardiani L, Shrotri A, Kobayashi H, Fukuoka A (2020) Structure and activity of activated carbon functionalized with maleic anhydride by diels-alder reaction. Catal Today 357:409–415. https://doi.org/10.1016/j.cattod.2019.08.056

    Article  CAS  Google Scholar 

  15. Khorief Nacereddine A, Merzoud L, Morell C, Chermette H (2021) A computational investigation of the selectivity and mechanism of the Lewis acid catalyzed oxa-Diels–Alder cycloaddition of substituted diene with benzaldehyde. J Comput Chem 42(18):1296–1311. https://doi.org/10.1002/jcc.26547

    Article  CAS  PubMed  Google Scholar 

  16. Kořenková M, Kremláček V, Hejda M, Turek J, Khudaverdyan R, Erben M, Jambor R, Růžička A, Dostál L (2020) Hetero Diels–Alder reactions of masked dienes containing heavy group 15 elements. Chem Eur J 26(5):1144–1154. https://doi.org/10.1002/chem.201904953

  17. Sahrane M, Marakchi K, Ghailane R (2021) Theoretical study of the Diels-Alder reaction of 3-bromo-1-phenylprop-2-ynone with furan and 2-methylfuran. Theoret Chem Acc 140(8):1–10. https://doi.org/10.1007/s00214-021-02812-2

    Article  CAS  Google Scholar 

  18. Kącka-Zych A, Jasiński R (2020) Molecular mechanism of Hetero Diels-Alder reactions between (E)-1, 1, 1-trifluoro-3-nitrobut-2-enes and enamine systems in the light of Molecular Electron Density Theory. J Mol Graph Model 101:107714. https://doi.org/10.1016/j.jmgm.2020.107714

    Article  CAS  PubMed  Google Scholar 

  19. Hall H Jr, Nogues P, Rhoades J, Sentman R, Detar M (1982) (Carbomethoxy) maleic anhydride, a highly reactive new dienophile and comonomer. J Org Chem 47(8):1451–1455. https://doi.org/10.1021/jo00347a014

    Article  CAS  Google Scholar 

  20. Sakata K, Fujimoto H (2016) Origin of the endo selectivity in the Diels-Alder reaction between cyclopentadiene and maleic anhydride. Eur J Org Chem 2016(25):4275–4278. https://doi.org/10.1002/ejoc.201600676

    Article  CAS  Google Scholar 

  21. Jia W, Si Z, Feng Y, Zhang X, Zhao X, Sun Y, Tang X, Zeng X, Lin L (2020) Oxidation of 5-[(Formyloxy) methyl] furfural to maleic anhydride with atmospheric oxygen using α-MnO2/Cu (NO3) 2 as catalysts. ACS Sustain Chem Eng 8(21):7901–7908. https://doi.org/10.1021/acssuschemeng.0c01144

    Article  CAS  Google Scholar 

  22. Huynh VN, Leitner M, Bhattacharyya A, Uhlstein L, Kreitmeier P, Sakrausky P, Rehbein J, Reiser O (2020) Diels-Alder reactions and electrophilic substitutions with atypical regioselectivity enable functionalization of terminal rings of anthracene. Commun Chem 3(1):1–9. https://doi.org/10.1038/s42004-020-00407-9

    Article  CAS  Google Scholar 

  23. Andrews L, Keefer R (1955) A kinetic study of the Diels-Alder reaction of various anthracene and maleic anhydride derivatives. J Am Chem Soc 77(23):6284–6289. https://doi.org/10.1021/ja01628a066

    Article  CAS  Google Scholar 

  24. Karas LJ, Campbell AT, Alabugin IV, Wu JI (2020) Antiaromaticity gain activates tropone and nonbenzenoid aromatics as normal-electron-demand Diels-Alder dienes. Org Lett 22(18):7083–7087. https://doi.org/10.1021/acs.orglett.0c02343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Atalay A, Abbasoglu R (2019) Theoretical investigation on facial and stereoselectivity in Diels-Alder cycloadditions of maleic anhydride to dissymmetric cage-annulated cyclohexa-1, 3-dienes. J Phys Org Chem 32(2):e3893. https://doi.org/10.1002/poc.3893

    Article  CAS  Google Scholar 

  26. Çelebi-Ölçüm N, Sanyal A, Aviyente V (2009) Understanding the stereoselection induced by chiral anthracene templates in Diels−Alder cycloaddition: a DFT study. J Org Chem 74(6):2328–2336. https://doi.org/10.1021/jo802365v

    Article  CAS  PubMed  Google Scholar 

  27. Stewart CA Jr (1963) Diene structure and Diels-Alder reactivity. J Org Chem 28(12):3320–3323. https://doi.org/10.1021/jo01047a010

    Article  CAS  Google Scholar 

  28. Welker ME (2020) Boron and silicon-substituted 1, 3-dienes and dienophiles and their use in Diels-Alder reactions. Molecules 25(16):3740. https://doi.org/10.3390/molecules25163740

    Article  CAS  PubMed Central  Google Scholar 

  29. Dewyer AL, Zimmerman PM (2017) Finding reaction mechanisms, intuitive or otherwise. Org Biomol Chem 15(3):501–504. https://doi.org/10.1039/C6OB02183B

    Article  CAS  PubMed  Google Scholar 

  30. Akuamoah DA, Tia R, Adei E (2020) Computational study on the mechanism of the reaction of benzenesulfonyl azides with oxabicyclic alkenes. J Mol Model 26(11):1–9. https://doi.org/10.1007/s00894-020-04582-3

    Article  CAS  Google Scholar 

  31. Ahraminejad M, Ghiasi R, Mohtat B, Ahmadi R (2021) Computational investigation of the substituent effect in the [2+ 4] Diels-Alder cycloaddition reactions of HSi≡ Si (para-C6H4X) with benzene. J Chin Chem Soc 68:806–816. https://doi.org/10.1002/jccs.202000428

    Article  CAS  Google Scholar 

  32. Funes-Ardoiz I, Schoenebeck F (2020) Established and emerging computational tools to study homogeneous catalysis—from quantum mechanics to machine learning. Chem 6(8):1904–1913. https://doi.org/10.1016/j.chempr.2020.07.008

    Article  CAS  Google Scholar 

  33. Abbiche K, Acharjee N, Salah M, Hilali M, Laknifli A, Komiha N, Marakchi K (2020) Unveiling the mechanism and selectivity of [3+ 2] cycloaddition reactions of benzonitrile oxide to ethyl trans-cinnamate, ethyl crotonate and trans-2-penten-1-ol through DFT analysis. J Mol Model 26(10):1–12. https://doi.org/10.1007/s00894-020-04547-6

    Article  CAS  Google Scholar 

  34. Michael R. Johnson, Myung-Chol Kang, Alexei G. Nemazany, Kenner C. Rice. EP1021397A1 European Patent Office. https://patents.google.com/patent/EP1021397A1/en

  35. Bakalova SM, Santos AG (2004) A computational study of the Diels-Alder reaction of ethyl-S-lactyl acrylate and cyclopentadiene. Origins of Stereoselectivity. J Org Chem 69(24):8475–8481. https://doi.org/10.1021/jo049298s

  36. Domingo LR, Ríos-Gutiérrez M, Pérez P (2020) A molecular electron density theory study of the participation of tetrazines in aza-Diels–Alder reactions. RSC Adv 10(26):15394–15405. https://doi.org/10.1039/D0RA01548B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Uzun S, Esen Z, Koç E, Usta NC, Ceylan M (2019) Experimental and density functional theory (MEP, FMO, NLO, Fukui functions) and antibacterial activity studies on 2-amino-4-(4-nitrophenyl)-5, 6-dihydrobenzo [h] quinoline-3-carbonitrile. J Mol Struct 1178:450–457. https://doi.org/10.1016/j.molstruc.2018.10.001

    Article  CAS  Google Scholar 

  38. Salavati-fard T, Caratzoulas S, Doren DJ (2015) DFT Study of solvent effects in acid-catalyzed Diels-Alder cycloadditions of 2, 5-dimethylfuran and maleic anhydride. J Phys Chem A 119(38):9834–9843. https://doi.org/10.1021/acs.jpca.5b05060

    Article  CAS  PubMed  Google Scholar 

  39. Hernández-Mancera JP, Núñez-Zarur F, Vivas-Reyes R (2020) Diels-Alder reactivity of a chiral anthracene template with symmetrical and unsymmetrical dienophiles: a DFT study. ChemistryOpen 9(7):748. https://doi.org/10.1002/open.202000137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh MD, Ningombam A (2010) High stereoselectivity in the Diels-Alder reaction of substituted anthracenes: reactions of 1-succinimidoanthracene and 1-phthalimidoanthracene with maleic anhydride. Indian J Chem 49:789–794

    Google Scholar 

  41. Kloetzel MC (2011) The Diels‐Alder reaction with maleic anhydride. Org Synthesis 30–31

  42. Linder M, Brinck T (2013) On the method-dependence of transition state asynchronicity in Diels-Alder reactions. Phys Chem Chem Phys 15(14):5108–5114. https://doi.org/10.1039/C3CP44319A

    Article  CAS  PubMed  Google Scholar 

  43. Hernandez Mancera JP, Nunez-Zarur F, Gutierrez-Oliva S, Toro-Labbe A, Vivas-Reyes R (2020) Diels-Alder reaction mechanisms of substituted chiral anthracene: a theoretical study based on the reaction force and reaction electronic flux. J Comput Chem 41(23):2022–2032. https://doi.org/10.1002/jcc.26360

    Article  CAS  PubMed  Google Scholar 

  44. Kron KJ, Kosich M, Cave RJ, Vosburg DA (2018) Divergent Diels-Alder reactions in the biosynthesis and synthesis of endiandric-type tetracycles: a computational study. J Org Chem 83(18):10941–10947. https://doi.org/10.1021/acs.joc.8b01594

    Article  CAS  PubMed  Google Scholar 

  45. Jasiński R (2018) β-trifluoromethylated nitroethenes in Diels-Alder reaction with cyclopentadiene: a DFT computational study. J Fluorine Chem 206:1–7. https://doi.org/10.1016/j.jfluchem.2017.12.008

    Article  CAS  Google Scholar 

  46. Fakhar Z, Govender T, Lamichhane G, Maguire GEM, Kruger HG, Honarparvar B (2017) Computational model for the acylation step of the β-lactam ring: potential application for l, d-transpeptidase 2 in mycobacterium tuberculosis. J Mol Struct 1128:94–102. https://doi.org/10.1016/j.molstruc.2016.08.049

    Article  CAS  Google Scholar 

  47. Domingo LR, Ríos-Gutiérrez M, Pérez P (2017) How does the global electron density transfer diminish activation energies in polar cycloaddition reactions? A molecular electron density theory study. Tetrahedron 73(13):1718–1724. https://doi.org/10.1016/j.tet.2017.02.012

    Article  CAS  Google Scholar 

  48. Bakalova SM, Kaneti J, Markova N (2017) Computational study of exo-selective Diels-Alder cycloadditions, catalyzed by aluminum chloride. Bul Chem Commun 49:49195–49200

    Google Scholar 

  49. Yepes D, Pérez P, Jaque P, Fernández I (2017) Effect of Lewis acid bulkiness on the stereoselectivity of Diels-Alder reactions between acyclic dienes and α, β-enals. Org Chem Front 4(7):1390–1399. https://doi.org/10.1039/C7QO00154A

    Article  CAS  Google Scholar 

  50. Bandyopadhyay P, Ray S, Seikh MM (2019) Unraveling the regioselectivity of odd electron halogen bond formation using electrophilicity index and chemical hardness parameters. Phys Chem Chem Phys 21(48):26580–26590. https://doi.org/10.1039/C9CP05374C

    Article  CAS  PubMed  Google Scholar 

  51. Jasinski R, Jasinska E, Dresler E (2017) A DFT computational study of the molecular mechanism of [3 + 2] cycloaddition reactions between nitroethene and benzonitrile N-oxides. J Mol Model 23(1):13. https://doi.org/10.1007/s00894-016-3185-8

    Article  CAS  PubMed  Google Scholar 

  52. Jasinski R (2017) One-step versus two-step mechanism of Diels-Alder reaction of 1-chloro-1-nitroethene with cyclopentadiene and furan. J Mol Graph Model 75:55–61. https://doi.org/10.1016/j.jmgm.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  53. Afshari T, Mohsennia M (2019) A molecular electron density theory study of Diels-Alder reaction between Danishefsky’s diene and (2E)-3-phenyl-2-(trifluoromethyl) acrylonitrile. J Phys Org Chem 32(6):e3937. https://doi.org/10.1002/poc.3937

    Article  CAS  Google Scholar 

  54. De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density. J Comput Chem 23(12):1198–1209. https://doi.org/10.1002/jcc.10067

    Article  CAS  PubMed  Google Scholar 

  55. Ali JM, Lelisho TA (2020) Chemical fixation of CO2 with propylene oxide catalyzed by trimethylsulfonium bromide in the presence of HBr: a computational study. Theoret Chem Acc 139(10):1–10. https://doi.org/10.1007/s00214-020-02673-1

    Article  CAS  Google Scholar 

  56. Soleymani M (2018) DFT study of double 1,3-dipolar cycloaddition of nitrilimines with allenoates. Monatsh Chem 149(12):2183–2193. https://doi.org/10.1007/s00706-018-2311-y

    Article  CAS  Google Scholar 

  57. Hoque MJ, Ahsan A, Hossain MB (2018) Molecular docking, pharmacokinetic, and DFT calculation of naproxen and its degradants. Biomed J Sci Tech Res 9(5):7360–7365

    Google Scholar 

  58. Schmauck J, Breugst M (2017) The potential of pnicogen bonding for catalysis—a computational study. Org Biomol Chem 15(38):8037–8045. https://doi.org/10.1039/C7OB01599B

    Article  CAS  PubMed  Google Scholar 

  59. Soleymani M (2019) Theoretical study on the [4+2] cycloaddition of 1,3-dimethylindole with 2,6-dimethylquinone. Struct Chem 30(4):1173–1184. https://doi.org/10.1007/s11224-018-1259-1

    Article  CAS  Google Scholar 

  60. Andrés J, Berski S, Silvi B (2016) Curly arrows meet electron density transfers in chemical reaction mechanisms: from Electron Localization Function (ELF) analysis to valence-shell electron-pair repulsion (VSEPR) inspired interpretation†. ChemComm 52(53):8183–8195. https://doi.org/10.1039/C5CC09816E

    Article  CAS  Google Scholar 

  61. Lawal MM, Govender T, Maguire GEM, Kruger HG, B, (2018) Honarparvar, DFT study of the acid-catalyzed esterification reaction mechanism of methanol with carboxylic acid and its halide derivatives. Int J Quantum Chem 118(4):e25497. https://doi.org/10.1002/qua.25497

    Article  CAS  Google Scholar 

  62. Grimmel SA, Reiher M (2019) The electrostatic potential as a descriptor for the protonation propensity in automated exploration of reaction mechanisms. Faraday Discuss 220:443–463. https://doi.org/10.1039/C9FD00061E

    Article  CAS  PubMed  Google Scholar 

  63. Patel TR, Ganguly B (2020) Revealing the origin of Π-facial and regioselectivity in the Diels-Alder reaction of unsymmetrical, cage-annulated 1,3-cyclohexadiene with ethyl propiolate dienophile: a DFT study. ChemistrySelect 5(43):13524–13529. https://doi.org/10.1002/slct.202003443

    Article  CAS  Google Scholar 

  64. Sandhya KS, Suresh CH (2014) Designing metal hydride complexes for water splitting reactions: a molecular electrostatic potential approach. Dalton Trans 43(32):12279–12287. https://doi.org/10.1039/C4DT01343C

    Article  CAS  PubMed  Google Scholar 

  65. Nazeer U, Rasool N, Mujahid A, Mansha A, Zubair M, Kosar N, Mahmood T, Raza Shah A, Shah SAA, Zakaria ZA, Akhtar MN (2020) Selective arylation of 2-bromo-4-chlorophenyl-2-bromobutanoate via a Pd-catalyzed Suzuki cross-coupling reaction and its electronic and non-linear optical (NLO) properties via DFT studies. Molecules 25(15):3521. https://doi.org/10.3390/molecules25153521

    Article  CAS  PubMed Central  Google Scholar 

  66. Mubarik A, Rasool N, Hashmi MA, Mansha A, Zubair M, Shaik MR, Sharaf MAF, Awwad EM, Abdelgawad A (2021) Computational study of structural, molecular orbitals, optical and thermodynamic parameters of thiophene sulfonamide derivatives. Curr Comput-Aided Drug Des 11(2):211. https://doi.org/10.3390/cryst11020211

    Article  CAS  Google Scholar 

  67. Odame F (2018) DFT Study of the reaction mechanism of N-(carbomylcarbamothioyl) benzamide. Acta Chimica Slovenica 65(2):328–332. https://doi.org/10.17344/acsi.2017.4001

  68. Zou Y, Yang S, Sanders JN, Li W, Yu P, Wang H, Tang Z, Liu W, Houk KN (2020) Computational investigation of the mechanism of Diels-Alderase PyrI4. J Am Chem Soc 142(47):20232–20239. https://doi.org/10.1021/jacs.0c10813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sultan MA, Karama U, Almansour AI, Soliman SM (2016) Theoretical study on regioselectivity of the Diels-Alder reaction between 1,8-dichloroanthracene and acrolein. Molecules 21(10):1277. https://doi.org/10.3390/molecules21101277

    Article  CAS  PubMed Central  Google Scholar 

  70. Borisevich SS, Kovalskaya AV, Tsypysheva IP, Khursan SL (2014) Thermodynamically controlled Diels-Alder reaction of 12-N-methylcytisine: a DFT study. J Theor Comput Chem 13(06):1450048. https://doi.org/10.1142/S0219633614500485

    Article  CAS  Google Scholar 

  71. Benallou A (2019) Solvent effect on Hetero-Diels-Alder reaction of isoselenazole with symmetrical acetylenic dienophiles: a MEDT study. Comput Theor Chem 1154:17–25. https://doi.org/10.1016/j.comptc.2019.03.007

    Article  CAS  Google Scholar 

  72. Hassan RJ, Abdallah HH (2020) Theoretical study of Diels-Alder reaction of but-3-en-2-one with hexa-1,2,4-triene: a density functional theory study. Aro-the Sci J Koya University 8(1):74. https://doi.org/10.14500/aro.10632

  73. Yadav P, Tandon H, Malik B, Chakraborty T (2020) A new approach to compute atomic electrophilicity index in terms of Gordy’s electronegativity. J Chem Res 45(1–2):201–206. https://doi.org/10.1177/1747519820937272

    Article  CAS  Google Scholar 

  74. Tandon H, Chakraborty T, Suhag V (2020) A scale of atomic electronegativity in terms of atomic nucleophilicity index. Found Chem 22(2):335–346. https://doi.org/10.1007/s10698-020-09358-4

    Article  CAS  Google Scholar 

  75. Li W, Li C, Lyu Y (2019) A computational mechanistic insight into H2 activation and CO2 reduction over β-diketiminato-ligated group 13 metal complexes. J Catal 373:1–12. https://doi.org/10.1016/j.jcat.2019.03.029

    Article  CAS  Google Scholar 

  76. Demircioğlu Z, Kaştaş ÇA, Büyükgüngör O (2015) Theoretical analysis (NBO, NPA, Mulliken Population Method) and molecular orbital studies (hardness, chemical potential, electrophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2-methylphenylimino)methyl)-3-methoxyphenol. J Mol Struct 1091:183–195. https://doi.org/10.1016/j.molstruc.2015.02.076

    Article  CAS  Google Scholar 

  77. Zhang M, Wei D, Wang Y, Li S, Liu J, Zhu Y, Tang M (2014) DFT study on the reaction mechanisms and stereoselectivities of NHC-catalyzed [2 + 2] cycloaddition between arylalkylketenes and electron-deficient benzaldehydes. Org Biomol Chem 12(33):6374–6383. https://doi.org/10.1039/C4OB00606B

    Article  CAS  PubMed  Google Scholar 

  78. Kour M, Gupta R, Bansal RK (2017) Experimental and theoretical investigation of the reaction of secondary amines with maleic anhydride. Aust J Chem 70(12):1247. https://doi.org/10.1071/CH17206

    Article  CAS  Google Scholar 

  79. Pilepić V, Uršić S (2001) Nucleophilic reactivity of the nitroso group. Fukui function DFT calculations for nitrosobenzene and 2-methyl-2-nitrosopropane. J Mol Struct Theochem 538(1–3):41–49. https://doi.org/10.1016/S0166-1280(00)00642-4

  80. Liu S, Hao Hu, Pedersen LG (2010) Steric, quantum, and electrostatic effects on SN2 reaction barriers in gas phase. J Phys Chem A 114(18):5913–5918. https://doi.org/10.1021/jp101329f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Siadati SA, Nami N (2016) Investigation of the possibility of functionalization of C20 fullerene by benzene via Diels-Alder reaction. Physica E 84:55–59. https://doi.org/10.1016/j.physe.2016.05.041

    Article  CAS  Google Scholar 

Download references

Funding

A.M. is grateful to Higher Education Commission (HEC) Pakistan for providing financial support for this study (NRPU/5613).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by UR, AM, MZ, SA and ZAR. The first draft of the manuscript was written by AFZ, AM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Asim Mansha or Ameer Fawad Zahoor.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23580 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, U., Mansha, A., Zahid, M. et al. Quantum mechanical modeling unveils the effect of substitutions on the activation barriers of the Diels–Alder reactions of an antiviral compound 7H-benzo[a]phenalene. Struct Chem 33, 1907–1920 (2022). https://doi.org/10.1007/s11224-022-01948-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01948-6

Keywords

Navigation