Log in

Structure and bonding of new boron and carbon superpolyhedra

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Using the DFT methods, we computationally predict the stability of cage compounds E4nRn (E = B, C; R = H, F; n = 4, 8, 12, 24) based on Platonic bodies and Archimedean polyhedrons in which all vertices are replaced by tetrahedral E4R fragments. Cage compounds B60R12 and C60 with pyramidal units B5R or C5 are also examined and it is shown that only boron compounds are stable. The nature of chemical bonding in the discussed compounds is analyzed using the AdNDP and NBO methods. The hydrocarbons have classical 2c-2e C-C σ-bonds, while the boron compounds are formed by the polyhedral units with the delocalized multicenter bonds which connected three and more boron atoms. The new example of spherical aromaticity according to the 2(N+1)2 rule in the case of B16F4 with multicenter 16c-2e bonds are revealed. Stable compound B60H12 contains 12 5c-2e B-B bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Burdett JK, Lee S (1985) Moments method and elemental structures. J Am Chem Soc 107:3063–3082

    Article  CAS  Google Scholar 

  2. Johnston RL, Hoffmann R (1989) Superdense carbon, C8: supercubane or analog of .gamma.-silicon? J Am Chem Soc 111:810–819

    Article  CAS  Google Scholar 

  3. Cremer D, Kraka E, Joo H, Stearns JA, Zwier TS (2006) Exploration of the potential energy surface of C4H4 for rearrangement and decomposition reactions of vinylacetylene: a computational study. Part I Phys Chem Chem Phys 8:5304–5316

    Article  CAS  PubMed  Google Scholar 

  4. Nemirowski A, Reisenauer HP, Schreiner PR (2006) Tetrahedrane–dossier of an unknown. Chem Eur J 12:7411–7420

    Article  CAS  PubMed  Google Scholar 

  5. Haunschild R, Frenking G (2009) Tetrahedranes. A theoretical study of singlet E4H4 molecules (E = C–Pb and B–Tl). Mol Phys 107:911–922 (and references cited therein)

    Article  CAS  Google Scholar 

  6. Maier G, Pfriem S (1978) Tetra-tert-butylcyclopentadienone. Angew Chem Int Ed Engl 17:520–521

    Article  Google Scholar 

  7. Maier G, Neudert J, Wolf O, Pappusch D, Sekiguchi A, Tanaka M, Matsuo T (2002) Tetrakis(trimethylsilyl)tetrahedrane. J Am Chem Soc 124:13819–13826

    Article  CAS  PubMed  Google Scholar 

  8. Minyaev RM, Grabanova TN, Minkin VI (2013) Structural stability of supertetrahedral [n] prismanes and their boron analogues: a quantum-chemical study. Dokl Chem 453:270–272

    Article  CAS  Google Scholar 

  9. Minyaev RM, Minkin VI (2013) Supertetrahedral cubane C32H8 and supertetrahedral dodecahedrane C80H20 with tetrahedral C4H fragments in the vertices. Mendeleev Commun 23:131–132

    Article  CAS  Google Scholar 

  10. Minyaev RM, Popov IA, Koval VV, Boldyrev AI, Minkin VI (2015) Supertetrahedral B80H20, C80H20, and Al80H20 analogs of dodecahedrane and their substituted molecules. Srtuct Chem 26:223–229

    CAS  Google Scholar 

  11. Minyaev RM, Starikov AG, Minkin VI (2016) Supermolecular design: from molecules to solid states. Int J Quant Chem 116:259–264

    Article  CAS  Google Scholar 

  12. Ortiz YP, Klein DJ, Liebman JF (2018) Paradigms and paradoxes. Tetrahedral units: dodecahedral super-structures. Srtuct Chem 29:89–96

    CAS  Google Scholar 

  13. Olson JK, Boldyrev AI (2011) Ab initio search for global minimum structures of neutral and anionic B4H4 clusters. Chem Phys 379:1–5

    Article  CAS  Google Scholar 

  14. Mennekes T, Paetzold P, Boese R, Bläser D (1991) Tetra-tert-butyltetraboratetrahedrane. Angew Chem Int Ed Engl 30:173–175

    Article  Google Scholar 

  15. Neu A, Mennekes T, Paetzold P, Englert U, Hofmann M, Schleyer PR (1999) Novel tetraalkyltetraboranes of the type B4R4, B4H2R4 and B4H4R4. Inorg Chim Acta 289:58–69

    Article  CAS  Google Scholar 

  16. Ahmed L, Castillo J, Morrison JA (1992) Chemistry of tetraboron tetrachloride. Synthesis and characterization of tetraboron tetrabromide (B4Br4) and observation of B4BrCl3, B4Br2Cl2, and B4Br3Cl. Inorg Chem 31:1858–1860 (and references cited therein)

    Article  CAS  Google Scholar 

  17. See full list of references in Ref. 15

  18. Lewars E (1998) Pyramidane: an ab initio study of the C5H4 potential energy surface. J Mol Struct (THEOCHEM) 423:173–188

    Article  CAS  Google Scholar 

  19. Lewars E (2000) Pyramidane 2. Further computational studies: potential energy surface, basicity and acidity, electron-withdrawing and electron-donating power, ionization energy and electron affinity, heat of formation and strain energy, and NMR chemical shifts. J Mol Struct (THEOCHEM) 507:165–184

    Article  CAS  Google Scholar 

  20. Kenny JP, Krueger KM, Rienstra-Kiracofe JC, Schaefer III HF (2001) C5H4: Pyramidane and its low-lying isomers. J Phys Chem A 105:7745–7750

    Article  CAS  Google Scholar 

  21. Minkin VV, Minyaev RM (2002) Pyramidane and pyramidal cations. Dokl Chem 385:203–206

    Article  CAS  Google Scholar 

  22. McKee ML (1999) Ab initio study of BnHn and Bn(NH2)n (n=3–6) species. A comparison of classical and nonclassical structures. Inorg Chem 38:321–330

    Article  CAS  Google Scholar 

  23. McKee ML, Wang Z-X, Schleyer PR (2000) Ab initio study of the hypercloso boron hydrides BnHn and BnHn . Exceptional stability of neutral B13H13. J Am Chem Soc 122:4781–4793

    Article  CAS  Google Scholar 

  24. Lee VY, Ito Y, Sekiguchi A, Gornitzka H, Gapurenko OA, Minkin VI, Minyaev RM (2013) Pyramidanes. J Am Chem Soc 135:8794–8797

    Article  CAS  PubMed  Google Scholar 

  25. Lee VY, Gapurenko OA, Ito Y, Meguro T, Sugasawa H, Sekiguchi A, Minyaev RM, Minkin VI, Herber RH, Gornitzka H (2016) Pyramidanes: the covalent form of the ionic compounds. Organometallics 35:346–356

    Article  CAS  Google Scholar 

  26. Lee VY, Sugasawa H, Gapurenko OA, Minyaev RM, Minkin VI, Gornitzka H, Sekiguchi A (2018) From borapyramidane to borole dianion. J Am Chem Soc 140:6053–6056

    Article  CAS  PubMed  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari R, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09. Revision E.01. Gaussian Inc, Wallingford CT

  28. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0. Theoretical Chemistry Institute. University of Wisconsin. Madison

  29. Zubarev DY, Boldyrev AI (2008) Develo** paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217

    Article  CAS  PubMed  Google Scholar 

  30. Zhurko GA.ChemCraft software. http://www.chemcraftprog.com. Accessed 1 May 2019

  31. Schleyer PR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  PubMed  Google Scholar 

  32. Pyykkö P, Atsumi M (2009) Molecular double-bond covalent radii for elements Li–E112. Chem Eur J 15:12770–12779

    Article  CAS  PubMed  Google Scholar 

  33. Hirsch A, Chen Z, Jiao H (2000) Spherical aromaticity in I h symmetrical fullerenes: the 2(N+1)2 rule. Angew Chem Int Ed Engl 39:3915–3917

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation (grant 16-13-10050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruslan M. Minyaev or Alexander I. Boldyrev.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 999 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gapurenko, O.A., Minyaev, R.M., Fedik, N.S. et al. Structure and bonding of new boron and carbon superpolyhedra. Struct Chem 30, 805–814 (2019). https://doi.org/10.1007/s11224-019-1279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-1279-5

Keywords

Navigation