Log in

On the performance of molecular tailoring approach for estimation of the intramolecular hydrogen bond energies of RAHB systems: a comparative study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In the current research, the performance of molecular tailoring approach (MTA) for estimation of the intramolecular hydrogen bond (IMHB) energies of the simple resonance-assisted hydrogen bond (RAHB) systems was theoretically investigated. First, a wide range of malonaldehyde derivatives (36 members) including the F, Cl, Br, CN, NO2, ethen (-CH=CH2), ethin (-C ≡ CH), CF3, OCH3, C2H5, CH3, and Ph substitutions at R1, R2, and R3 positions were considered. Then, all of these molecules at MP2/6-311++G(d, p) level of theory have been optimized and their MTA energies were calculated. Furthermore, various qualitative descriptors of IMHB such as structural, spectroscopic, topological, and molecular orbital parameters were considered, and all of correlations between these factors and MTA energies were explored. According to their regression coefficients (R2), the linear characteristic of correlations obeys the following order:

$$ {H}_{\mathrm{H}\dots \mathrm{O}}>{d}_{\mathrm{O}-\mathrm{H}}>{E}_{\mathrm{CT}}>{V}_{\mathrm{H}\bullet \bullet \bullet \mathrm{O}}>{\rho}_{\mathrm{H}\bullet \bullet \bullet \mathrm{O}}>{\nu}_{\mathrm{O}-\mathrm{H}}>{d}_{\mathrm{H}\bullet \bullet \bullet \mathrm{O}}>{d}_{\mathrm{O}\bullet \bullet \bullet \mathrm{O}} $$
$$ 0.952\kern1.5em 0.940\kern1.2em 0.936\kern0.75em 0.914\kern1.2em 0.901\kern1.2em 0.834\kern1em 0.789\kern1.3em 0.755 $$

These correlation coefficients have compared with the corresponding R2 values of other models such as RRM, RBM, GCM, IRM, and OCM, which leads to the following order of linearity:

$$ \mathrm{MTA}\ge \mathrm{RRM}>\mathrm{RBM}>\mathrm{GCM}>\mathrm{IRM}>\mathrm{OCM}. $$

Finally, the significance of π-electron delocalization (π-ED) of RAHB rings is also evaluated by the geometrical factor of Gilli (λ) and the harmonic oscillator model of aromaticity (HOMA) that presents the excellent linear correlations with MTA energies, which may be implied on the validity of RAHB theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jeffery GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  2. Desiraju GR, Steiner T (1999) The weak hydrogen bond. Oxford University Press, New York

    Google Scholar 

  3. Kolman PA, Leland CA (1972). Chem Rev 72:283

    Google Scholar 

  4. Grabowski SJ (2004). J Phys Org Chem 17:18

    CAS  Google Scholar 

  5. Sobcyzk L, Grabowski SJ, Krygowski TM (2005). Chem Rev 105:3513

    Google Scholar 

  6. Rini JM (1995). Annu Rev Biophys Biomol Struct 24:551

    CAS  PubMed  Google Scholar 

  7. Lis H, Shanon N (1998). Chem Rev 98:637

    CAS  PubMed  Google Scholar 

  8. Davis AP, Wareham RS (1999). Angew Chem Int Ed 38:2978

    CAS  Google Scholar 

  9. Gilli G, Gilli P (2009) The nature of hydrogen bond. Oxford University Press, New York

    Google Scholar 

  10. Woodford JN (2007). J Phys Chem A 111:8519

    CAS  PubMed  Google Scholar 

  11. Kuldova K, Corval A, Trommsdorff HP, Lehn JM (1997). J Phys Chem A 101:6850

    CAS  Google Scholar 

  12. Douhal A, Sastre R (1994). Chem Phys Lett 219:91

    CAS  Google Scholar 

  13. Sytnik A, Del Valle JC (1995). J Phys Chem 99:13028

    CAS  Google Scholar 

  14. Pimental GC, McClellan AL (1960) The hydrogen bond. Freeman, San Francisco

    Google Scholar 

  15. Schuster P, Zundel G (1976) The hydrogen bond, recent development in theory and experiment. North-Holland, Amsterdam

    Google Scholar 

  16. Nowroozi A, Raissi H, Farzad F (2005). J Mol Struct (THEOCHEM) 730:161

    CAS  Google Scholar 

  17. Buemi G, Zuccarello F (2004) DFT study of the intramolecular hydrogen bonds in the amino and nitro-derivatives of malonaldehyde. Chem Phys 306:115

    CAS  Google Scholar 

  18. Rozas I, Alkorta I, Elguero J (2001) Intramolecular hydrogen bonds in orthosubstituted hydroxybenzenes and in 8-susbtituted 1-hydroxynaphthalenes: can a methyl group be an acceptor of hydrogen bonds. J Phys Chem A 105:10462

    CAS  Google Scholar 

  19. Jablonski M, Kaczmarek A, Sadlej AJ (2006) Estimates of the energy of intramolecular hydrogen bonds. J Phys Chem A 110:10890

    CAS  PubMed  Google Scholar 

  20. Nowroozi A, Hajiabadi H, Akbari F (2014) OH…O and OH…S intramolecular interactions in simple resonance-assisted hydrogen bond systems: a comparative study of various models. Struct Chem 25:251

    CAS  Google Scholar 

  21. Gadre SR, Ganesh V (2006) Molecular tailoring approach, towards PC-based ab initio treatment of large molecules. J Theor Comput Chem 5:835

    CAS  Google Scholar 

  22. Gadre SR (2010) Molecular tailoring approach for exploring structure, energetics and properties of clusters. J Chem Sci 122:47

    CAS  Google Scholar 

  23. Gadre SR (2014) Molecular tailoring approach: a route for ab initio treatment of large clusters. J Chem Res 47:2739

    Google Scholar 

  24. Gadre SR (2016) Toward an accurate and inexpensive estimation of CCSD(T)/CBS binding energies of large water clusters. J Phys Chem A 120(28):5706

    PubMed  Google Scholar 

  25. Gadre SR (2010) Ab initio investigation of benzene clusters. J Chem Phys 133:164308

    PubMed  Google Scholar 

  26. Gadre SR (2008) Intramolecular hydrogen bonding and cooperative interactions in carbohydrates via the molecular tailoring approach. J Phys Chem A 112:312

    PubMed  Google Scholar 

  27. Gadre SR (2008) Structure, energetics, and reactivity of boric acid nanotubes: a molecular tailoring approach. J Phys Chem A 112:7699

    PubMed  Google Scholar 

  28. Gadre SR (2009) A web-interface for ab initio geometry optimization of large molecules. Acta Crystallogr B 65:107

    PubMed  Google Scholar 

  29. Gadr SR (2007) Intramolecular hydrogen bond energy in polyhydroxy systemes: a critical comparision of MTA and isodesmic approaches. J Phys Chem A 111:6472

    Google Scholar 

  30. Gadre SR (2014) Estimation of the intramolecular OH…O=C hydrogen bond energy via the molecular tailoring approach. Part I aliphatic structures. J Chem Inf Model 54:1963

    Google Scholar 

  31. Deshmukh MM, Suresh CH, Gadre SR (2007) Intramolcular hydrogen bond energy in polyhydroxy systemes a critical comparison of MTA and isodesmic approaches. J Phys Chem A 111:6472

    CAS  PubMed  Google Scholar 

  32. Deshmukh MM, Gadre SR, Bartolotti LJ (2006) Estimation of intramolecular hydrogen bond energy via molecular tailoring approach. J Phys Chem A 110:12519

    CAS  PubMed  Google Scholar 

  33. Gadre SR, Shirsat RN, Limaye AC (1994). J Phys Chem 98:9165

    CAS  Google Scholar 

  34. Ganesh V, Dongare RK, Balanarayan P, Gadre SR (2006). J Chem Phys 125:104

    Google Scholar 

  35. Babu K, Gadre SR (2003). J Comput Chem 24:484

    CAS  PubMed  Google Scholar 

  36. Rusinka D (2015). J Phys Chem A 119:3674

    Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW,Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford

  38. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, –Oxford

  39. Reed AE, Curtis LA, Weinhold FA (1998). Chem Rev 88:899

    Google Scholar 

  40. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) Evidence for resonance-assisted hydrogen bonding from crystal-structure correlation on the enol form of the bdiketone fragment. J Am Chem Soc 111:1023

    CAS  Google Scholar 

  41. Krygowski TM, Cyranski MK (1996) Separation of the energetic and geometric contributions to the aromaticity of π-electron carbocyclics. Tetrahedron 52:1713

    CAS  Google Scholar 

  42. Dziembowska T (1990) Intramolecular hydrogen bonding. Akademia Rolnicza, Szczecin

    Google Scholar 

  43. Raissi H, Farzad F, Nowroozi A (2005). J Mol Struct 752:130

    CAS  Google Scholar 

  44. Raissi H, Nowroozi A, Farzad F (2006). Spectrochim Acta 63A:729

    CAS  Google Scholar 

  45. Raissi H, Nowroozi A, Hakimi M (2006). Spectrochim Acta 65A:605

    CAS  Google Scholar 

  46. Krygowski TM, Stepion BT (2005) Sigma- and π -electron delocalization: focus on substituent effects. Chem Rev 105:3482

    CAS  PubMed  Google Scholar 

  47. Krygowski TM, Cyranski MK (2001) Structural aspects of aromaticity. Chem Rev 101:1385

    CAS  PubMed  Google Scholar 

  48. Poater J, Duran M, Sola M, Silvi B (2005) Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem Rev 105:3911

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Nowroozi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keykhaei, A., Nowroozi, A. On the performance of molecular tailoring approach for estimation of the intramolecular hydrogen bond energies of RAHB systems: a comparative study. Struct Chem 31, 423–433 (2020). https://doi.org/10.1007/s11224-019-01415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01415-9

Keywords

Navigation