Log in

Solvent effects on the molecular stability, intramolecular hydrogen bond, and π-electron delocalization in the simple RAHB systems with different donors and acceptors: a quantum chemical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In the present study, solvent effects on the molecular stability, intramolecular hydrogen bond (IMHB), and π-electron delocalization (π-ED) in some of the simple resonance-assisted hydrogen bond (RAHB) systems with different donors and acceptors are investigated. In this regard, all of the H-bonded structures (enol, thiol, and selenol) in the gas phase and presence of water/DMSO solvents with polarizable continuum (PCM)/self-consistent isodensity PCM methods at the M06-2X/6-311G++(d,p) level of theory are optimized. Relative energies clearly indicate that the enol conformers are more stable than the thiol and selenol ones in the gas phase while in the presence of polar solvents, the thiol structures are more stable than the other members. In the RAHB systems, the IMHB, π-ED, and tautomerization process are important factors in determining the stability of the H-bonded conformers. A survey of tautomeric equilibriums clearly shows that the tautomerization/activation energy of thio ⇋ thiol equilibrium is greater/smaller than the other equilibriums. These results reveal that the thiol tautomer is more preferred than the enol and selenol ones, from kinetic and thermodynamic points of view. Estimation of the IMHB by different descriptors emphasizes the presence of a stronger IMHB in the enol conformers. Moreover, the π-ED of enol tautomers are greater than those of the thiol and selenol ones. The results of IMHB and π-ED descriptors are compatible/incompatible with the stability order of the gas phase/solvents. Consequently, one can conclude that in the gas phase, the IMHB and π-ED are superior factors to determine the stability of tautomers. But in the presence of polar solvents, the tautomerization process is a dominant factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cossi M, Rega N, Scalmanl G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  PubMed  Google Scholar 

  2. Castejon H, Kenneth B, Wiberg SS, Hinz W (2001) Solvent effects on methyl transfer reactions. 2. The reaction of amines with trimethylsulfonium salts. J Am Chem Soc 123:6092–6097

    Article  CAS  PubMed  Google Scholar 

  3. Yoosefian M, Mola A (2015) Solvent effects on binding energy, stability order and hydrogen bonding of guanine–cytosine base pair. J Mol Liq 209:526–530

    Article  CAS  Google Scholar 

  4. Yoosefian M, Chermahini ZJ, Raissi H, Mola A, Sadeghi M (2015) A theoretical study on the structure of 2-amino-1,3,4-thiadiazole and its 5-substituted derivatives in the gas phase, water, THF and DMSO solutions. J Mol Liq 203:137–142

    Article  CAS  Google Scholar 

  5. Spencere JN, Holmboem R, Kirshenbaudma I, Firth N, Pinto P (1982) Solvent effects on the tautomeric equilibrium of 2,4-pentanedione. Can J Chem 60:1178

    Article  Google Scholar 

  6. Rogers JT, Burdett JL (1905) Solvent effects on proton chemical shifts and equilibrium constant. Can J Chem 43

  7. Wong MW, Kenneth B, Wiberg T, Frischt MJ (1992) Solvent effects tautomeric equilibria of formamide and 2-pyridone in the gas phase and solution, an ab initio SCRF study. J Am Chem Soc 114:1645–1652

    Article  CAS  Google Scholar 

  8. Emsley J (1984) Structure and bonding, vol 2. Springer, Berlin

    Google Scholar 

  9. Nowroozi A, Tayyari SF, Rahemi H (2003). Spectrochim Acta A 59:1757

    Article  CAS  Google Scholar 

  10. Nowroozi A, Raissi H (2006). J Mol Struct (THEOCHEM) 759:93–100

    Article  CAS  Google Scholar 

  11. Raissi H, Nowroozi A, Roozbeh M, Farzad F (2006). J Mol Struct 787:148

    Article  CAS  Google Scholar 

  12. Boese R, Antipin MY, Blaser D, Lyssenko A (1998) Bla¨ser D, Lyssenko KA. J Phys Chem B 102:8654

    Article  CAS  Google Scholar 

  13. Iijima K, Ohnogi A, Shibata S (1987). J Mol Struct 111:156

    Google Scholar 

  14. Camerman A, Masteropalo D, Camerman N (1983). J Am Chem Soc 105:1584

    Article  CAS  Google Scholar 

  15. Arnold Z, Zemlicka J (1960) Coll. Czech Chem Commun 25:1318

    Article  CAS  Google Scholar 

  16. Reevs LW (1957). Can J Chem 35:1351

    Article  Google Scholar 

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  18. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  19. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  CAS  PubMed  Google Scholar 

  20. Tomasi J, Cammi R, Mennucci B, Cappelli C, Corni S (2002) Molecular properties in solution described with a continuum solvation model. Phys Chem Chem Phys 4:5697–5712

    Article  CAS  Google Scholar 

  21. Biegler-Konig F, Schonbohm J, Bayles D (2001) AIM2000—a program to analyze and visualize atoms in molecules. J Comp Chem 22:545

    Article  Google Scholar 

  22. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1995) NBO version 3.1. Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin

    Google Scholar 

  23. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989). J Am Chem Soc 111:1023

    Article  CAS  Google Scholar 

  24. Nowroozi A, Jalbout AF, Roohi H, Khalilinia E, Sadeghi M, De leon A, Raissi H (2009) Hydrogen bonding in acetylacetaldehyde: theoretical insights from the theory of atoms in molecules. Int J Quantum Chem 109:1505–1514

    Article  CAS  Google Scholar 

  25. Schuster P, Zundel G (1976) The hydrogen bond. Recent development in theory and experiment. North-Holland, Amsterdam

  26. Nowroozi A, Raissi H, Farzad F (2005). J Mol Struct (THEOCHEM) 730:161

    Article  CAS  Google Scholar 

  27. Buemi G, Zuccarello F (2004). Chem Phys 306:115

    Article  CAS  Google Scholar 

  28. Rozas I, Alkorta I, Elguero J (2001). J Phys Chem A 105:10462

    Article  CAS  Google Scholar 

  29. Jablonski M, Kaczmarek A, Sadlej AJ (2006). J Phys Chem A 110:10890

    Article  CAS  PubMed  Google Scholar 

  30. Espinosa E, Molins E (2000). J Chem Phys 113:5686

    Article  CAS  Google Scholar 

  31. Musin RN, Mariam YH (2006). J Phys Org Chem 19:425–444

    Article  CAS  Google Scholar 

  32. Grabowski SJ (2005) Hydrogen bond—new insights, chapter 11. Springer, Poland, p 418

    Google Scholar 

  33. Reed AE, Curtiss LA, Weinhold FA (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  34. Stone AJ (2017). J Phys Chem A 121:1531

    Article  CAS  PubMed  Google Scholar 

  35. Krygowski TM, Stepion BT (2005). Chem Rev 105:3482

    Article  CAS  PubMed  Google Scholar 

  36. Sobczyk L, Grabowski SJ, Krygowski TM (2005). Chem Rev 105:3513

    Article  CAS  PubMed  Google Scholar 

  37. Krygowski TM, Cyranski MK (1996). Tetrahedron 52:1713

    Article  CAS  Google Scholar 

  38. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Hommes NJR (1996). J Am Chem Soc 118:6317

    Article  CAS  PubMed  Google Scholar 

  39. Poater J, Feradera X, Duran M, Sola M (2003). Chem Eur J 9:400

    Article  CAS  PubMed  Google Scholar 

  40. Bultinck P, Ponec R, Van Damme S (2005). J Phys Org Chem 18:706

    Article  CAS  Google Scholar 

  41. Nakhaei E, Nowroozi A (2016). Computat Theor Chem 1096:27

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully thank the University of Sistan and Baluchestan (USB) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Nowroozi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafat, R., Nowroozi, A. Solvent effects on the molecular stability, intramolecular hydrogen bond, and π-electron delocalization in the simple RAHB systems with different donors and acceptors: a quantum chemical study. Struct Chem 30, 777–785 (2019). https://doi.org/10.1007/s11224-018-1221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1221-2

Keywords

Navigation