Log in

A comparative study of two-ring resonance-assisted hydrogen bond systems

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Two-ring resonance-assisted hydrogen bond (RAHB) systems can be obtained by merging two cis enol ring of malondialdehyde with different orientations. In the present work, a comparative theoretical study of all of the possible two-ring RAHB systems, 2,3-dihydroxy-2-butene-4-dial (DBD), 1,5-dihydroxy-1,4-diene-3-pentanone (DDP) and 2-dihydroxy-methylene-propanediol (DMP), was carried out. Also, the influence of the co-existence of two RAHB rings on the molecular structures, intramolecular hydrogen bond (IMHB) and the π-electron delocalization (π-ED) was investigated. In this regard, ab initio calculations on the various equilibrium conformations of DBD, DDP and DMP at MP2/6-311++G(d,p) level of theory have been performed and the IMHB strength of model compounds by different descriptors such as geometrical, topological, molecular orbital, spectroscopic and energetic parameters was evaluated. Then, the π-ED of DBD, DDP and DMP was estimated by using a variety of indicators, such as geometrical factor of Gilli (λ), the harmonic oscillator model of aromaticity, the nucleus-independent chemical shift, the para delocalization index, the average two-center index, the aromatic fluctuation index. Finally, based on the computational results, it was found that the strength of IMHB and significance of π-ED in two-ring RAHB systems are strongly related to the relative flow of π-electrons in two rings. In other words, the parallel flows of π-electrons in DMP and DDP increase the IMHB strength and π-ED, while opposite flow of π-electrons in DBD decreases the IMHB strength and π-ED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  2. Scheiner S (1997) Hydrogen bonding. A theoretical perspective. Oxford University Press, New York

    Google Scholar 

  3. Desiraju GR, Steiner T (2001) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Book  Google Scholar 

  4. Grabowski SJ (2006) Hydrogen bonding—new insights. Springer, Berlin

    Book  Google Scholar 

  5. Gilli G, Gilli P (2009) The nature of hydrogen bond. Oxford University Press, New York

    Book  Google Scholar 

  6. Emsly J (1980) Chem Soc Rev 9:91

    Article  Google Scholar 

  7. Chen J, McAllister MA, Lee JK, Houk KN (1998) J Org Chem 63:4611

    Article  CAS  Google Scholar 

  8. Remer LC, Jensen JH (2000) J Phys Chem A 104:9266

    Article  CAS  Google Scholar 

  9. Gobi S, Vass E, Mogyarfalvi G, Tarczay G (2011) Phys Chem Chem Phys 13:13972

    Article  CAS  Google Scholar 

  10. Sanz P, Mό O, Yáñez M, Elguero J (2007) Chem Phys Chem 8:1950

    CAS  Google Scholar 

  11. Sanz P, Mό O, Yáñez M, Elguero J (2008) Chem Eur J 14:4225

    Article  CAS  Google Scholar 

  12. Alkorta I, Elguero J, Mό O, Yáñez M, Bene JD (2004) Mol Phys 102:2563

    Article  CAS  Google Scholar 

  13. Alkorta I, Elguero J, Mό O, Yáñez M, Bene JD (2005) Chem Phys Lett 411:411

    Article  CAS  Google Scholar 

  14. Emsley J (1984) Structure and bonding, vol 2. Springer, Berlin

    Google Scholar 

  15. Woodford JN (2007) J Phys Chem A 111:8519

    Article  CAS  Google Scholar 

  16. Nowroozi A, Raissi H (2006) J Mol Struct (THEOCHEM) 759:93

    Article  CAS  Google Scholar 

  17. Raissi H, Nowroozi A, Roozbeh M, Farzad F (2006) J Mol Struct 787:148

    Article  CAS  Google Scholar 

  18. Nowroozi A, Roohi H, Sadeghi MS, Sheibaninia M (2011) Int J Quantum Chem 111:578

    Article  CAS  Google Scholar 

  19. Nowroozi A, Hajiabadi H (2014) Struct Chem 25:215

    Article  CAS  Google Scholar 

  20. Grabowski SJ (2001) J Mol Struct (THEOCHEM) 562:137

    Article  CAS  Google Scholar 

  21. Wojtulewski S, Grabowski SJ (2003) J Mol Struct (THEOCHEM) 621:285

    Article  CAS  Google Scholar 

  22. Fazli M, Raissi H, Chahkandi B, Aarabi M (2010) J Mol Struct (THEOCHEM) 942:115

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel H B, Scuseria GE, Robb MA, Cheeseman JR, Zarzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV,.; Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA, Gaussian, Inc. Pittsburgh Pa. 2003

  24. Biegler-König F, Schönbohm J, Bayles D (2001) AIM2000-A program to analyze and visualize atoms in molecules. J Comp Chem 22:545

    Article  Google Scholar 

  25. Glendening DE, Reed AE, Carpenter JE, Weinhold F; NBO, Version 3.1

  26. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023

    Article  CAS  Google Scholar 

  27. Krygowski TM, Cyranski MK (1996) Tetrahedron 52:1713

    Article  CAS  Google Scholar 

  28. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Hommes NJR (1996) J Am Chem Soc 118:6317

    Article  CAS  Google Scholar 

  29. Poater J, Feradera X, Duran M, Sola M (2003) Chem Eur J 9:400

    Article  CAS  Google Scholar 

  30. Bultinck P, Ponec R, Van Damme S (2005) J Phys Org Chem 18:706

    Article  CAS  Google Scholar 

  31. Matito E, Duran M, Sola M (2005) J Chem Phys 122:14109

    Article  Google Scholar 

  32. Matta CF, Boyd RJ, Becke A (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley, Weinheim

    Book  Google Scholar 

  33. Koch U, Popelier P (1995) J Phys Chem 99:9747

    Article  CAS  Google Scholar 

  34. Nowroozi A, Raissi H, Hajiabai H, Mohammadzadeh P (2011) Int J Quantum Chem 111:3040

    Article  CAS  Google Scholar 

  35. Nowroozi A, Roohi H, Hajiabadi H, Raissi H, Khalilinia E, Najafi M (2011) Comput Theor Chem 963:517

    Article  CAS  Google Scholar 

  36. Weinhold F, Landis CR (2012) Discovering chemistry with natural bond orbitals. Wiley, Hoboken

    Book  Google Scholar 

  37. Nowroozi A, Raissi H, Farzad F (2005) J Mol Struct (THEOCHEM) 730:161

    Article  CAS  Google Scholar 

  38. Buemi G, Zuccarello F (2004) Chem Phys 306:115

    Article  CAS  Google Scholar 

  39. Jablonski M, Kaczmarek A, Sadlej AJ (2006) J Phys Chem A 110:10890

    Article  CAS  Google Scholar 

  40. Rozas I, Alkorta I, Elguero J (2001) J Phys Chem A 105:10462

    Article  CAS  Google Scholar 

  41. Schuster P, Zundel G (1976) the hydrogen bond. Recent development in theory and experiment. North-Holland, Amesterdam

    Google Scholar 

  42. Nowroozi A, Hajiabadi H, Akbari F (2014) Struct Chem 25:251

    Article  CAS  Google Scholar 

  43. Espinosa E, Molins M (2000) J Chem Phys 113:5686

    Article  CAS  Google Scholar 

  44. Krygowski TM, Stepion BT (2005) Chem Rev 105:3482

    Article  CAS  Google Scholar 

  45. Krygowski TM, Cyranski MK (2001) Chem Rev 101:1385

    Article  CAS  Google Scholar 

  46. Poater J, Duran M, Sola M, Silvi B (2005) Chem Rev 105:3911

    Article  CAS  Google Scholar 

  47. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Chem Rev 105:3513

    Article  CAS  Google Scholar 

  48. Nowroozi A, Nakhaei E, Masumian E (2014) Struct Chem 25:1415

    Article  CAS  Google Scholar 

  49. Krygowski TM, Zachara-Horeglad JE, Palusiak M (2010) J Org Chem 75:4944

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank University of Sistan and Baluchestan (USB) for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nowroozi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowroozi, A., Rahmani, S., Eshraghi, A. et al. A comparative study of two-ring resonance-assisted hydrogen bond systems. Struct Chem 27, 829–838 (2016). https://doi.org/10.1007/s11224-015-0637-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0637-1

Keywords

Navigation