Log in

OH···O and OH···S intramolecular interactions in simple resonance-assisted hydrogen bond systems: a comparative study of various models

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The energy of intramolecular hydrogen bond (IMHB) is a central subject in chemistry and biochemistry. In contrast with the IMHBs, there is no general accepted procedure to determine the IMHB energy. In the present study, for the first time, we applied all the different adopted models for assessing the energy of IMHB of O–H···O and O–H···S in simple resonance-assisted hydrogen bond systems (the cis enol form of malonaldehyde, thiomalonaldehyde, and a variety of halogenated derivatives), and compared them. The energy of IMHB, by various methods such as related rotamers method (RRM), rotational barrier method (RBM), conformational analysis method (CAM), isodesmic reaction method (IRM), and open–close method (OCM), was estimated. Exploring and comparing the correlations between the IMHB energies with various descriptors of hydrogen bond strength, such as geometrical, topological, molecular orbital, and spectroscopic parameters, were carried out. According to the theoretical results, we found that both RRM and RBM have the best linear correlations with all of the hydrogen bond descriptors (R ≥ 0.90) while the results of other methods (CAM, IRM and OCM) are not suitable (R ≤ 0.80). Surprisingly, we found that the OCM, which has been widely applied in the estimation of the IMHB energy, has the weakest linear dependent with all of the HB descriptors. Consequently, according to the regression coefficients, the order of linearity of these methods is as follows: RRM > RBM > > CAM > IRM > OCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Jeffrey GA (1997) An Introduction to Hydrogen Bonding. Oxford University Press, New York

    Google Scholar 

  2. Grabowski SJ (2006) Hydrogen Bonding-New Insights. Springer, Berlin

    Book  Google Scholar 

  3. Gilli G, Gilli P (2009) The Nature of Hydrogen Bond. Oxford University Press, Oxford

    Book  Google Scholar 

  4. Sanz P, Mό O, Yáñez M, Elguero J (2007) ChemPhysChem 8:1950

    Article  CAS  Google Scholar 

  5. Sanz P, Mό O, Yáñez M, Elguero J (2008) Chem Eur J 14:4225

    Article  CAS  Google Scholar 

  6. Alkorta I, Elguero J, Mό O, Yáñez M, Bene JD (2005) Chem Phys Lett 411:411

    Article  CAS  Google Scholar 

  7. Temprado M, Roux MV, Umnahanant P, Zhao H, Chickos JS (2005) J Phys Chem 109B:12590

    Google Scholar 

  8. Emsley J (1984) Structure and Bonding, vol 2. Springer, Berlin

    Google Scholar 

  9. Woodford JN (2007) J Phys Chem 111A:8519

    Article  Google Scholar 

  10. Nowroozi A, Raissi H (2006) J Mol Struct (THEOCHEM) 759:93

    Article  CAS  Google Scholar 

  11. Raissi H, Nowroozi A, Roozbeh M, Farzad F (2006) J Mol Struct 787:148

    Article  CAS  Google Scholar 

  12. Nowroozi A, Roohi H, Sadeghi MS, Sheibaninia M (2011) Int J Quantum Chem 111:578

    Article  CAS  Google Scholar 

  13. Kuldova K, Corval A, Trommsdorff HP, Lehn JM (1997) J Phys Chem 101A:6850

    Article  Google Scholar 

  14. Douhal A, Sastre R (1994) Chem Phys Lett 219:91

    Article  CAS  Google Scholar 

  15. Sytnic A, Del Valle JC (1995) J Phys Chem 99:13028

    Article  Google Scholar 

  16. Schuster P, Zundel G (1976) The Hydrogen Bond, Recent Development in Theory and Experiment. Nourth-Holland, Amesterdam

    Google Scholar 

  17. Buemi G, Zuccarello F (2004) Chem Phys 306:115

    Article  CAS  Google Scholar 

  18. Nowroozi A, Raissi H, Farzad F (2005) J Mol Struct (THEOCHEM) 730:161

    Article  CAS  Google Scholar 

  19. Jablonski M, Kaczmarek A, Sadlej AJ (2006) J Phys Chem 110A:10890

    Article  Google Scholar 

  20. Rozas I, Alkorta I, Elguero J (2001) J Phys Chem 105A:10462

    Article  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel H B, Scuseria GE, Robb MA, Cheeseman JR, Zarzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03 Program Package. Gaussian, Inc., Pittsburgh

    Google Scholar 

  22. Biegler-König F, Schönbohm J, Bayles D (2001) AIM2000-A Program to Analyze and Visualize Atoms in Molecules. J Comp Chem 22:545

    Article  Google Scholar 

  23. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1995) NBO Version 3.1, Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin

    Google Scholar 

  24. Hameka HF (1958) Mol Phys 1:203

    Article  CAS  Google Scholar 

  25. Pratt DA, Heer MI, Mulder P, Ingold KU (2001) J Am Chem Soc 123:5518

    Article  CAS  Google Scholar 

  26. Song KS, Liu L, Guo Qx (2003) J Org Chem 68:262

    Article  CAS  Google Scholar 

  27. Borges DS, Martinho SJA (1998) J Phys Chem Ref Data 1998(27):707

    Article  Google Scholar 

  28. Musin RN, Mariam YH (2006) J Phys Org Chem 19:425

    Article  CAS  Google Scholar 

  29. Bader RFW (1990) Atoms in Molecules: A Quantum Theory. Clarendon, Oxford

    Google Scholar 

  30. Grabowski SJ (1999) Chem Phys Lett 312:542

    Article  CAS  Google Scholar 

  31. Espinosa E, Molins M (2000) J Chem Phys 113:5686

    Article  CAS  Google Scholar 

  32. Grabowski SJ (2001) J Mol Struct 562:137

    Article  CAS  Google Scholar 

  33. Reed AE, Curtis LA, Weinhold FA (1998) Chem Rev 88:899

    Article  Google Scholar 

  34. Raissi H, Farzad F, Nowroozi A (2005) J Mol Struct 752:130

    Article  CAS  Google Scholar 

  35. Raissi H, Nowroozi A, Farzad F (2006) Spectrochim Acta 63A:729

    Article  CAS  Google Scholar 

  36. Raissi H, Nowroozi A, Hakimi M (2006) Spectrochim Acta 65A:605

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the university of Sistan and Baluchestan (USB) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nowroozi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowroozi, A., Hajiabadi, H. & Akbari, F. OH···O and OH···S intramolecular interactions in simple resonance-assisted hydrogen bond systems: a comparative study of various models. Struct Chem 25, 251–258 (2014). https://doi.org/10.1007/s11224-013-0281-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0281-6

Keywords

Navigation