Log in

How to estimate the intramolecular hydrogen-bond energy of complex RAHB systems? A theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In the present study, new estimations of the intramolecular hydrogen-bond (IMHB) energy in complex RAHB systems were represented. In this regard the malonaldehyde and its 16 halogenated (F, Cl, Br) derivatives, as a set of model compounds, were used. Various enol forms of these compounds at MP2/6-311++G(3df,3pd) level were optimized. Theoretically, enol forms has three degree of freedom correspond to the rotation around C–C, C=C, and C–O bonds. Same as original related rotamers method (RRM1), which is based on rotation about C–C/C=C bonds, by considering rotations about C–C/C–O and C=C/C–O bonds, we can obtain two different method, RRM2 and RRM3, respectively. These methods were used to estimate the IMHB energies in RAHB systems. Exploring and comparing the correlations between these RRM’s energies with various descriptors of hydrogen-bond strength, such as geometrical, topological, molecular orbital, and spectroscopic properties were carried out. Moreover, we found that the RRM2, as original RRM1, has excellent linear correlations while RRM3 has weak dependence with hydrogen bond descriptors. Consequently, according to the regression coefficients, the order of accuracy of these methods is as follows:

$${\text{RRM1}} \approx {\text{RRM2}} > {\text{RRM3}}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  2. Grabowski SJ (2006) Hydrogen bonding—new insights. Springer, Berlin

    Book  Google Scholar 

  3. Gilli G, Gilli P (2009) The nature of hydrogen bond. Oxford University Press, New York

    Book  Google Scholar 

  4. Sanz P, Mό O, Yáñez M, Elguero J (2007) ChemPhysChem 8:1950

    Article  CAS  Google Scholar 

  5. Sanz P, Mό O, Yáñez M, Elguero J (2008) Chem-Eur J 14:4225

    Article  CAS  Google Scholar 

  6. Alkorta I, Elguero J, Mό O, Yáñez M, Bene JD (2004) Mol Phys 102:2563

    Article  CAS  Google Scholar 

  7. Alkorta I, Elguero J, Mό O, Yáñez M, Bene JD (2005) Chem Phys Lett 411:411

    Article  CAS  Google Scholar 

  8. Emsley J (1984) Structure and bonding, vol 2. Springer, Berlin

    Google Scholar 

  9. Woodford JN (2007) J Phys Chem 111A:8519

    Article  Google Scholar 

  10. Nowroozi A, Raissi H (2006) J Mol Struct (THEOCHEM) 759:93

    Article  CAS  Google Scholar 

  11. Raissi H, Nowroozi A, Roozbeh M, Farzad F (2006) J Mol Struct 787:148

    Article  CAS  Google Scholar 

  12. Nowroozi A, Roohi H, Sadeghi MS, Sheibaninia M (2011) Int J Quantum Chem 111:578

    Article  CAS  Google Scholar 

  13. Schuster P, Zundel G (1976) The hydrogen bond. Recent development in theory and experiment. North-Holland, Amesterdam

    Google Scholar 

  14. Rozas I, Alkorta I, Elguero J (2001) J Phys Chem 105A:10462

    Article  Google Scholar 

  15. Jablonski M, Kaczmarek A, Sadlej AJ (2006) J Phys Chem 110A:10890

    Article  Google Scholar 

  16. Nowroozi A, Raissi H, Farzad F (2005) J Mol Struct (THEOCHEM) 730:161

    Article  CAS  Google Scholar 

  17. Buemi G, Zuccarello F (2004) Chem Phys 306:115

    Article  CAS  Google Scholar 

  18. Nowroozi A, Raissi H, Hajiabadi H (2011) Int J Quantum Chem 111:3040

    Article  CAS  Google Scholar 

  19. Nowroozi A, Roohi H, Hajiabadi H, Raissi H (2011) Comput Theor Chem 111:3040

    CAS  Google Scholar 

  20. Nowroozi A, Hajiabadi H, Raissi H (2012) Int J Quantum Chem 112:1384

    Article  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zarzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA, Gaussian, Inc. Pittsburgh 2003

  22. Biegler-König F, Schönbohm J, Bayles D (2001) AIM2000—A program to analyze and visualize atoms in molecules. J Comput Chem 22:545

    Article  Google Scholar 

  23. Glendening DE, Reed AE, Carpenter JE, Weinhold F, NBO, Version 3.1

  24. Hameka HF (1958) Mol Phys 1:203

    Article  CAS  Google Scholar 

  25. Musin RN, Mariam YH (2006) J Phys Org Chem 19:425

    Article  CAS  Google Scholar 

  26. Dziembowska T (1990) Intramolecular hydrogen bonding. Akademia Rolnicza, Szczecin

  27. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, Oxford

    Google Scholar 

  28. Grabowski SJ (1999) Chem Phys Lett 312:542

    Article  CAS  Google Scholar 

  29. Espinosa E, Molins M (2000) J Chem Phys 113:5686

    Article  CAS  Google Scholar 

  30. Grabowski SJ (2001) J Mol Struct 562:137

    Article  CAS  Google Scholar 

  31. Reed AE, Curtis LA, Weinhold FA (1998) Chem Rev 88:899

    Article  Google Scholar 

  32. Raissi H, Farzad F, Nowroozi A (2005) J Mol Struct 752:130

    Article  CAS  Google Scholar 

  33. Raissi H, Nowroozi A, Farzad F (2006) Spectrochim Acta 63A:729

    Article  CAS  Google Scholar 

  34. Raissi H, Nowroozi A, Hakimi M (2006) Spectrochim Acta 65A:605

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thanks from university of Sistan and Baluchestan (USB) for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nowroozi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowroozi, A., Hajiabadi, H. How to estimate the intramolecular hydrogen-bond energy of complex RAHB systems? A theoretical study. Struct Chem 25, 215–220 (2014). https://doi.org/10.1007/s11224-013-0253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0253-x

Keywords

Navigation