Log in

A Diffraction Effect Investigation for the Solar Irradiance Absolute Radiometer on the Fengyun-3F Satellite

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The measurements of the Total Solar Irradiance (TSI) is a primary means to investigate solar activity and key measurement for understanding global climate change. The aperture diffraction is an error factor for the Solar Irradiance Absolute Radiometer (SIAR) on the Fengyun-3F (FY-3F) satellite. The diffraction effect correction factors can currently only be obtained by simulation, and they are obtained based on a series of approximate conditions that do not allow the accuracy of the diffraction correction results to be assessed. In this paper, we establish the diffraction effect measurement equipment based on the dark imaging technology and the theory of diffraction by Fraunhofer. The total light image and the aperture diffraction images of different angles were obtained by the CCD camera. The images were corrected by linearity, background, and continuity. Then, the diffraction effect curve of diffraction angle can be obtained. Finally, the diffraction correction factor of SIAR/FY-3F can be obtained by the accumulation of multiple apertures and combining the weighted integration of the solar spectrum. The results illustrated that the value of the diffraction correction factor of the SIAR aperture system on the FY-3F satellite is \(2.85\times 10^{-3}\), and the uncertainty of diffraction effect experimental measurement is 4.62%, which reduces the measurement error of the diffraction effect on the total solar irradiance to \(1.32\times 10^{-4}\). This result provides a technical basis for high-precision TSI measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  • Bai, X., Zhang, Z., Feng, Z., Deng, Y., Bao, X., Yang, X.: 2021, Solar observation with the Fourier transform spectrometer I: preliminary results of the visible and near-infrared solar spectrum. Res. Astron. Astrophys. 21, 267. DOI.

    Article  ADS  Google Scholar 

  • Fröhlich, C.: 2012, Total solar irradiance observations. Surv. Geophys. 33, 453. DOI.

    Article  ADS  Google Scholar 

  • Halyo, N., Direskeneli, H., Barkstrom, B.R.: 1991, An information theory approach for evaluating Earth radiation budget (ERB) measurements: nonuniform sampling of diurnal longwave flux variations. IEEE 29(4). DOI.

  • Harber, D.M., Heuerman, K.F., Kopp, G.A.: 2006, Aperture edge scatter calibration of the cavity radiometers for the spaceflight total irradiance monitor. Proc. SPIE 6296, 62961I. DOI.

    Article  ADS  Google Scholar 

  • Javier, A., Cyril, V., Nadjem, B.: 2021, Total solar irradiance’s effect on the performance of empirical models for estimating global solar radiation: an empirical-based review. Energy 236. DOI.

  • Lee, J.N., Cahalan, R.F., Wu, D.L.: 2015, The 27-day rotational variations in total solar irradiance observations: from SORCE/TIM, ACRIMSAT/ACRIM III, and SOHO/VIRGO. J. Atmos. Solar-Terr. Phys. 132, 64. DOI.

    Article  ADS  Google Scholar 

  • Liu, G., Fang, W., Song, B., Ye, X., Wang, K.: 2018, Correction for diffraction effect of solar radiometer. Chin. Opt. 11(05), 851. DOI.

    Article  Google Scholar 

  • Scafetta, N., Willson, C.R.: 2014, ACRIM total solar irradiance satellite composite validation versus TSI proxy models. Astrophys. Space Sci. 350(2), 421. DOI.

    Article  ADS  Google Scholar 

  • Schmutz, W.K.: 2021, Changes in the total solar irradiance and climatic effects. J. Space Weather Space Clim. DOI.

    Article  Google Scholar 

  • Seibert, A.J., Boone, M.J., Lindfors, K.K.: 1998, Flat-field correction technique for digital detectors. Proc. SPIE 3336, 348. DOI.

    Article  ADS  Google Scholar 

  • Shirley, E.: 2004, Diffraction corrections in radiometry: spectral and total power and asymptotic properties. J. Opt. Soc. Am. A 21(10), 1895. DOI.

    Article  ADS  MathSciNet  Google Scholar 

  • Solanki, K.S., Krivova, A.N., Haigh, D.J.: 2013, Solar irradiance variability and climate. Annu. Rev. Astron. 51, 311. DOI.

    Article  ADS  Google Scholar 

  • Song, B., Ye, X., Finsterle, W., Gyo, M., Gander, M., Oliva, A.R.: 2021, The fengyun-3E/joint total solar irradiance absolute radiometer: instrument design, characterization, and calibration. Solar Phys. 296(3), 1. DOI.

    Article  Google Scholar 

  • Steinegger, M., Brandt, P.N., Pap, J., Schmidt, W.: 1990, Sunspot photometry and the total solar irradiance deficit measured in 1980 by ACRIM. Astrophys. Space Sci. 170(1 – 2), 127. DOI.

    Article  ADS  Google Scholar 

  • Stephens, G.L., Li, J., Wild, M., Clayson, C.A., Loeb, N., Kato, S.: 2012, An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 5(10), 691. DOI.

    Article  ADS  Google Scholar 

  • Steven, D., Jan, C., Mustapha, M.: 2022, Centennial Total Solar Irradiance Variation. Remote Sens. 14(5). DOI.

  • Tang, X., Fang, W., Wang, Y.: 2017, Time constant optimization of solar irradiance absolute radiometer. Optoelectron. Lett. 13(3), 179. DOI.

    Article  ADS  Google Scholar 

  • Tang, X., Fang, W., Wang, Y., Ye, X.: 2019, International comparison of the SIAR measurement and the WRR standard. Optoelectron. Lett. 15(2). DOI.

  • Thuillier, G., Zhu, P., Snow, M., Zhang, P., Ye, X.: 2022, Characteristics of solar-irradiance spectra from measurements, modeling, and theoretical approach. Light Sci. Appl. 11(1). DOI.

  • Wang, H., Wang, Y., Ye, X., Yang, D., Wang, K., Li, H., Fang, W.: 2017, Instrument description: the total solar irradiance monitor on the FY-3C satellite, an instrument with a pointing system. Solar Phys. 292, 112. DOI.

    Article  Google Scholar 

  • Woods, T.N., Harder, J.W., Kopp, G., McCabe, D., Rottman, G., Ryan, S.S.M.: 2021, Overview of the Solar Radiation and Climate Experiment (SORCE) Seventeen-Year Mission. Solar Phys. 296(8). DOI.

  • Ye, X., Yi, X., Lin, C., Fang, W., Wang, K., **a, Z.: 2020, Instrument development: Chinese radiometric benchmark of reflected solar band based on space cryogenic absolute radiometer. Remote Sens. 12(17), 2856. DOI.

    Article  ADS  Google Scholar 

Download references

Funding

This work was sponsored by the Science and Technology Development Plan Project of Jilin Province, China, grant number No. 20220101165JC; National Key R&D Program of China under grant 2022YFB3903200, 2022YFB3903203; Natural Science Foundation of China, grant number No. 42001316.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Hang Dong, Wei Fang, Dongjun Yang and **n Ye; methodology, **aolong Yi and ** Qi; validation, Hang Dong, Ruidong Jia, **n Ye and **aolong Yi; formal analysis, Hang Dong and Yuchen Lin; investigation, Hang Dong; resources, Hang Dong and Yuchen Lin; data curation, Hang Dong and Yuchen Lin; writing—original draft preparation, Hang Dong; writing—review and editing, Hang Dong and Peng Zhang; supervision, **aolong Yi and Jun Zhou. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to **n Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Yi, X., Zhang, P. et al. A Diffraction Effect Investigation for the Solar Irradiance Absolute Radiometer on the Fengyun-3F Satellite. Sol Phys 299, 67 (2024). https://doi.org/10.1007/s11207-024-02309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-024-02309-8

Keywords

Navigation