Log in

Rapid Rotation of an Erupting Prominence and the Associated Coronal Mass Ejection on 13 May 2013

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In this paper, we report the multiwavelength observations of an erupting prominence and the associated coronal mass ejection (CME) on 13 May 2013. The event occurs behind the western limb in the field of view of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) spacecraft. The prominence is supported by a highly twisted magnetic flux rope and shows rapid rotation in the counterclockwise direction during the rising motion. The rotation of the prominence lasts for ∼ 47 minutes. The average period, angular speed, and linear speed are ∼ 806 sec, ∼ 0.46 rad min−1, and ∼ 355 km s−1, respectively. The total twist angle reaches ∼ 7 \(\pi\), which is considerably larger than the threshold for kink instability. Writhing motion during 17:42 – 17:46 UT is clearly observed by SWAP in 174 Å and Extreme-UltraViolet Imager (EUVI) on board the behind Solar Terrestrial Relations Observatory (STEREO) spacecraft in 304 Å after reaching an apparent height of ∼ 405 Mm. Therefore, the prominence eruption is most probably triggered by kink instability. A pair of conjugate flare ribbons and post-flare loops are created and observed by STA/EUVI. The onset time of writhing motion is consistent with the commencement of the impulsive phase of the related flare. The 3D morphology and positions of the associated CME are derived using the graduated cylindrical shell (GCS) modeling. The kinetic evolution of the reconstructed CME is divided into a slow-rise phase (∼ 330 km s−1) and a fast-rise phase (∼ 1005 km s−1) by the writhing motion. The edge-on angular width of the CME is a constant (60), while the face-on angular width increases from 96 to 114, indicating a lateral expansion. The latitude of the CME source region decreases slightly from ∼ 18 to ∼ 13, implying an equatorward deflection during propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

Data Availability

The AIA data are courtesy of the NASA/SDO science teams. STEREO/SECCHI data are provided by a consortium of the US, UK, Germany, Belgium, and France.

Notes

  1. cdaw.gsfc.nasa.gov/CME_list.

  2. www.e-callisto.org.

References

  • Alexander, D., Liu, R., Gilbert, H.R.: 2006, Hard X-ray production in a failed filament eruption. Astrophys. J. 653, 719. DOI. ADS.

    Article  ADS  Google Scholar 

  • Amari, T., Canou, A., Aly, J.-J., Delyon, F., Alauzet, F.: 2018, Magnetic cage and rope as the key for solar eruptions. Nature 554, 211. DOI. ADS.

    Article  ADS  Google Scholar 

  • Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485. DOI. ADS.

    Article  ADS  Google Scholar 

  • Antonucci, E., Romoli, M., Andretta, V., Fineschi, S., Heinzel, P., Moses, J.D., Naletto, G., Nicolini, G., Spadaro, D., Teriaca, L., Berlicki, A., Capobianco, G., Crescenzio, G., Da Deppo, V., Focardi, M., Frassetto, F., Heerlein, K., Landini, F., Magli, E., Marco Malvezzi, A., Massone, G., Melich, R., Nicolosi, P., Noci, G., Pancrazzi, M., Pelizzo, M.G., Poletto, L., Sasso, C., Schühle, U., Solanki, S.K., Strachan, L., Susino, R., Tondello, G., Uslenghi, M., Woch, J., Abbo, L., Bemporad, A., Casti, M., Dolei, S., Grimani, C., Messerotti, M., Ricci, M., Straus, T., Telloni, D., Zuppella, P., Auchère, F., Bruno, R., Ciaravella, A., Corso, A.J., Alvarez Copano, M., Aznar Cuadrado, R., D’Amicis, R., Enge, R., Gravina, A., Jejčič, S., Lamy, P., Lanzafame, A., Meierdierks, T., Papagiannaki, I., Peter, H., Fernandez Rico, G., Giday Sertsu, M., Staub, J., Tsinganos, K., Velli, M., Ventura, R., Verroi, E., Vial, J.-C., Vives, S., Volpicelli, A., Werner, S., Zerr, A., Negri, B., Castronuovo, M., Gabrielli, A., Bertacin, R., Carpentiero, R., Natalucci, S., Marliani, F., Cesa, M., Laget, P., Morea, D., Pieraccini, S., Radaelli, P., Sandri, P., Sarra, P., Cesare, S., Del Forno, F., Massa, E., Montabone, M., Mottini, S., Quattropani, D., Schillaci, T., Boccardo, R., Brando, R., Pandi, A., Baietto, C., Bertone, R., Alvarez-Herrero, A., García Parejo, P., Cebollero, M., Amoruso, M., Centonze, V.: 2020, Metis: the Solar Orbiter visible light and ultraviolet coronal imager. Astron. Astrophys. 642, A10. DOI. ADS.

    Article  Google Scholar 

  • Aulanier, G., Dudík, J.: 2019, Drifting of the line-tied footpoints of CME flux-ropes. Astron. Astrophys. 621, A72. DOI. ADS.

    Article  ADS  Google Scholar 

  • Awasthi, A.K., Liu, R., Wang, Y.: 2019, Double-decker filament configuration revealed by mass motions. Astrophys. J. 872, 109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bemporad, A., Mierla, M., Tripathi, D.: 2011, Rotation of an erupting filament observed by the STEREO EUVI and COR1 instruments. Astron. Astrophys. 531, A147. DOI. ADS.

    Article  ADS  Google Scholar 

  • Berger, T.E., Shine, R.A., Slater, G.L., Tarbell, T.D., Title, A.M., Okamoto, T.J., Ichimoto, K., Katsukawa, Y., Suematsu, Y., Tsuneta, S., Lites, B.W., Shimizu, T.: 2008, Hinode SOT observations of solar quiescent prominence dynamics. Astrophys. J. Lett. 676, L89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Berghmans, D., Hochedez, J.F., Defise, J.M., Lecat, J.H., Nicula, B., Slemzin, V., Lawrence, G., Katsyiannis, A.C., van der Linden, R., Zhukov, A., Clette, F., Rochus, P., Mazy, E., Thibert, T., Nicolosi, P., Pelizzo, M.-G., Schühle, U.: 2006, SWAP onboard PROBA 2, a new EUV imager for solar monitoring. Adv. Space Res. 38, 1807. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Byrne, J.P., Maloney, S.A., McAteer, R.T.J., Refojo, J.M., Gallagher, P.T.: 2010, Propagation of an Earth-directed coronal mass ejection in three dimensions. Nat. Commun. 1, 74. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chae, J., Ahn, K., Lim, E.-K., Choe, G.S., Sakurai, T.: 2008, Persistent horizontal flows and magnetic support of vertical threads in a quiescent prominence. Astrophys. J. Lett. 689, L73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F.: 2011, Coronal mass ejections: models and their observational basis. Living Rev. Solar Phys. 8, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F., Shibata, K.: 2000, An emerging flux trigger mechanism for coronal mass ejections. Astrophys. J. 545, 524. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.-F., Xu, A.-A., Ding, M.-D.: 2020, Some interesting topics provoked by the solar filament research in the past decade. Res. Astron. Astrophys. 20, 166. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, H.-D., Zhang, J., Ma, S.-L.: 2012, The kinematics of an untwisting solar jet in a polar coronal hole observed by SDO/AIA. Res. Astron. Astrophys. 12, 573. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, Y., Du, G., Zhao, D., Wu, Z., Liu, W., Wang, B., Ruan, G., Feng, S., Song, H.: 2016, Imaging a magnetic-breakout solar eruption. Astrophys. J. Lett. 820, L37. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, X., Zhang, J., Ding, M.D., Olmedo, O., Sun, X.D., Guo, Y., Liu, Y.: 2013, Investigating two successive flux rope eruptions in a solar active region. Astrophys. J. Lett. 769, L25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, X., Ding, M.D., Zhang, J., Srivastava, A.K., Guo, Y., Chen, P.F., Sun, J.Q.: 2014a, On the relationship between a hot-channel-like solar magnetic flux rope and its embedded prominence. Astrophys. J. Lett. 789, L35. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, X., Ding, M.D., Guo, Y., Zhang, J., Vourlidas, A., Liu, Y.D., Olmedo, O., Sun, J.Q., Li, C.: 2014b, Tracking the evolution of a coherent magnetic flux rope continuously from the inner to the outer corona. Astrophys. J. 780, 28. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cho, K.-S., Lee, J., Bong, S.-C., Kim, Y.-H., Joshi, B., Park, Y.-D.: 2009, A coronal mass ejection and hard X-ray emissions associated with the kink instability. Astrophys. J. 703, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cremades, H., Bothmer, V.: 2004, On the three-dimensional configuration of coronal mass ejections. Astron. Astrophys. 422, 307. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cremades, H., Iglesias, F.A., Merenda, L.A.: 2020, Asymmetric expansion of coronal mass ejections in the low corona. Astron. Astrophys. 635, A100. DOI. ADS.

    Article  ADS  Google Scholar 

  • Curdt, W., Tian, H.: 2011, Spectroscopic evidence for helicity in explosive events. Astron. Astrophys. 532, L9. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezooijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: 2014, The interface region imaging spectrograph (IRIS). Solar Phys. 289, 2733. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fan, Y.: 2005, Coronal mass ejections as loss of confinement of kinked magnetic flux ropes. Astrophys. J. 630, 543. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fan, Y., Gibson, S.E.: 2003, The emergence of a twisted magnetic flux tube into a preexisting coronal arcade. Astrophys. J. Lett. 589, L105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gan, W.-Q., Zhu, C., Deng, Y.-Y., Li, H., Su, Y., Zhang, H.-Y., Chen, B., Zhang, Z., Wu, J., Deng, L., Huang, Y., Yang, J.-F., Cui, J.-J., Chang, J., Wang, C., Wu, J., Yin, Z.-S., Chen, W., Fang, C., Yan, Y.-H., Lin, J., **ong, W.-M., Chen, B., Bao, H.-C., Cao, C.-X., Bai, Y.-P., Wang, T., Chen, B.-L., Li, X.-Y., Zhang, Y., Feng, L., Su, J.-T., Li, Y., Chen, W., Li, Y.-P., Su, Y.-N., Wu, H.-Y., Gu, M., Huang, L., Tang, X.-J.: 2019, Advanced space-based solar observatory (ASO-S): an overview. Res. Astron. Astrophys. 19, 156. DOI. ADS.

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Nindos, A., Zhang, H.: 2019, The source and engine of coronal mass ejections. Phil. Trans. Roy. Soc. A 377, 20180094. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gilbert, H.R., Alexander, D., Liu, R.: 2007, Filament kinking and its implications for eruption and re-formation. Solar Phys. 245, 287. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gou, T., Veronig, A.M., Liu, R., Zhuang, B., Dumbović, M., Podladchikova, T., Reid, H.A.S., Temmer, M., Dissauer, K., Vršnak, B., Wang, Y.: 2020, Solar flare-CME coupling throughout two acceleration phases of a fast CME. Astrophys. J. Lett. 897, L36. DOI. ADS.

    Article  ADS  Google Scholar 

  • Green, L.M., Kliem, B., Török, T., van Driel-Gesztelyi, L., Attrill, G.D.R.: 2007, Transient coronal sigmoids and rotating erupting flux ropes. Solar Phys. 246, 365. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gui, B., Shen, C., Wang, Y., Ye, P., Liu, J., Wang, S., Zhao, X.: 2011, Quantitative analysis of CME deflections in the corona. Solar Phys. 271, 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guo, Y., Ding, M.D., Schmieder, B., Li, H., Török, T., Wiegelmann, T.: 2010, Driving mechanism and onset condition of a confined eruption. Astrophys. J. Lett. 725, L38. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guo, J.H., Zhou, Y.H., Guo, Y., Ni, Y.W., Karpen, J.T., Chen, P.F.: 2021, Formation and characteristics of filament threads in double-dipped magnetic flux tubes. Astrophys. J. 920, 131. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guo, J.H., Ni, Y.W., Zhou, Y.H., Guo, Y., Schmieder, B., Chen, P.F.: 2022, Prominence fine structures in weakly twisted and highly twisted magnetic flux ropes. Astron. Astrophys. 667, A89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hong, J.-C., Jiang, Y.-C., Yang, J.-Y., Zheng, R.-S., Bi, Y., Li, H.-D., Yang, B., Yang, D.: 2013, Twist in a polar blowout jet. Res. Astron. Astrophys. 13, 253. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hood, A.W., Priest, E.R.: 1981, Critical conditions for magnetic instabilities in force-free coronal loops. Geophys. Astrophys. Fluid Dyn. 17, 297. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Hou, Y.J., Zhang, J., Li, T., Yang, S.H., Li, X.H.: 2018, Eruption of a multi-flux-rope system in solar active region 12673 leading to the two largest flares in Solar Cycle 24. Astron. Astrophys. 619, A100. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Michels, D.J., Sheeley, J.N.R., Koomen, M.J.: 1982, The observation of a coronal transient directed at Earth. Astrophys. J. Lett. 263, L101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Vourlidas, A., Colaninno, R.C., Korendyke, C.M., Plunkett, S.P., Carter, M.T., Wang, D., Rich, N., Lynch, S., Thurn, A., Socker, D.G., Thernisien, A.F., Chua, D., Linton, M.G., Koss, S., Tun-Beltran, S., Dennison, H., Stenborg, G., McMullin, D.R., Hunt, T., Baugh, R., Clifford, G., Keller, D., Janesick, J.R., Tower, J., Grygon, M., Farkas, R., Hagood, R., Eisenhauer, K., Uhl, A., Yerushalmi, S., Smith, L., Liewer, P.C., Velli, M.C., Linker, J., Bothmer, V., Rochus, P., Halain, J.-P., Lamy, P.L., Auchère, F., Harrison, R.A., Rouillard, A., Patsourakos, S., St. Cyr, O.C., Gilbert, H., Maldonado, H., Mariano, C., Cerullo, J.: 2020, The solar orbiter heliospheric imager (SoloHI). Astron. Astrophys. 642, A13. DOI. ADS.

    Article  Google Scholar 

  • Ji, H., Wang, H., Schmahl, E.J., Moon, Y.-J., Jiang, Y.: 2003, Observations of the failed eruption of a filament. Astrophys. J. Lett. 595, L135. DOI. ADS.

    Article  ADS  Google Scholar 

  • **g, J., Liu, C., Lee, J., Ji, H., Liu, N., Xu, Y., Wang, H.: 2018, Statistical analysis of torus and kink instabilities in solar eruptions. Astrophys. J. 864, 138. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kippenhahn, R., Schlüter, A.: 1957, Eine Theorie der solaren Filamente. Mit 7 Textabbildungen. Z. Astrophys. 43, 36. ADS.

    ADS  MATH  Google Scholar 

  • Kliem, B., Titov, V.S., Török, T.: 2004, Formation of current sheets and sigmoidal structure by the kink instability of a magnetic loop. Astron. Astrophys. 413, L23. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96, 255002. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kliem, B., Török, T., Thompson, W.T.: 2012, A parametric study of erupting flux rope rotation. Modeling the “Cartwheel CME” on 9 April 2008. Solar Phys. 281, 137. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krall, J., St. Cyr, O.C.: 2006, Flux-rope coronal mass ejection geometry and its relation to observed morphology. Astrophys. J. 652, 1740. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kucera, T.A., Luna, M., Török, T., Muglach, K., Karpen, J.T., Downs, C., Sun, X., Thompson, B.J., Gilbert, H.R.: 2022, Comparison of two methods for deriving the magnetic field in a filament channel. Astrophys. J. 940, 34. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kumar, P., Cho, K.-S., Bong, S.-C., Park, S.-H., Kim, Y.H.: 2012, Initiation of coronal mass ejection and associated flare caused by helical kink instability observed by SDO/AIA. Astrophys. J. 746, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuperus, M., Raadu, M.A.: 1974, The support of prominences formed in neutral sheets. Astron. Astrophys. 31, 189. ADS.

    ADS  Google Scholar 

  • Kurokawa, H., Hanaoka, Y., Shibata, K., Uchida, Y.: 1987, Rotating eruption of an untwisting filament triggered by the 3B flare of 25 April, 1984. Solar Phys. 108, 251. DOI. ADS.

    Article  ADS  Google Scholar 

  • Labrosse, N., Heinzel, P., Vial, J.-C., Kucera, T., Parenti, S., Gunár, S., Schmieder, B., Kilper, G.: 2010, Physics of solar prominences: I—spectral diagnostics and non-LTE modelling. Space Sci. Rev. 151, 243. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, X., Yang, S., Chen, H., Li, T., Zhang, J.: 2015, Trigger of a blowout jet in a solar coronal mass ejection associated with a flare. Astrophys. J. Lett. 814, L13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, L., Zhang, J., Peter, H., Priest, E., Chen, H., Guo, L., Chen, F., Mackay, D.: 2016, Magnetic reconnection between a solar filament and nearby coronal loops. Nat. Phys. 12, 847. DOI. ADS.

    Article  Google Scholar 

  • Li, H., Chen, B., Feng, L., Li, Y., Huang, Y., Li, J.-W., Lu, L., Xue, J.-C., Ying, B.-L., Zhao, J., Yang, Y.-T., Gan, W.-Q., Fang, C., Song, K.-F., Wang, H., Guo, Q.-F., He, L.-P., Zhu, B., Zhu, C., Deng, L., Bao, H.-C., Cao, C.-X., Yang, Z.-G.: 2019, The Lyman-alpha Solar Telescope (LST) for the ASO-S mission — I. Scientific objectives and overview. Res. Astron. Astrophys. 19, 158. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, J., Forbes, T.G.: 2000, Effects of reconnection on the coronal mass ejection process. J. Geophys. Res. 105, 2375. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lites, B.W.: 2005, Magnetic flux ropes in the solar photosphere: the vector magnetic field under active region filaments. Astrophys. J. 622, 1275. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, R., Alexander, D.: 2009, Hard X-ray emission in kinking filaments. Astrophys. J. 697, 999. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, R., Alexander, D., Gilbert, H.R.: 2007, Kink-induced catastrophe in a coronal eruption. Astrophys. J. 661, 1260. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Y., Thernisien, A., Luhmann, J.G., Vourlidas, A., Davies, J.A., Lin, R.P., Bale, S.D.: 2010, Reconstructing coronal mass ejections with coordinated imaging and in situ observations: global structure, kinematics, and implications for space weather forecasting. Astrophys. J. 722, 1762. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, R., Kliem, B., Török, T., Liu, C., Titov, V.S., Lionello, R., Linker, J.A., Wang, H.: 2012, Slow rise and partial eruption of a double-decker filament. I. Observations and interpretation. Astrophys. J. 756, 59. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, W., De Pontieu, B., Vial, J.-C., Title, A.M., Carlsson, M., Uitenbroek, H., Okamoto, T.J., Berger, T.E., Antolin, P.: 2015, First high-resolution spectroscopic observations of an erupting prominence within a coronal mass ejection by the interface region imaging spectrograph (IRIS). Astrophys. J. 803, 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, R., Kliem, B., Titov, V.S., Chen, J., Wang, Y., Wang, H., Liu, C., Xu, Y., Wiegelmann, T.: 2016, Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist. Astrophys. J. 818, 148. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Y.A., Liu, Y.D., Hu, H., Wang, R., Zhao, X.: 2018, Multi-spacecraft observations of the rotation and nonradial motion of a CME flux rope causing an intense geomagnetic storm. Astrophys. J. 854, 126. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lörinčík, J., Dudík, J., Aulanier, G., Schmieder, B., Golub, L.: 2021, Imaging evidence for solar wind outflows originating from a coronal mass ejection footpoint. Astrophys. J. 906, 62. DOI. ADS.

    Article  ADS  Google Scholar 

  • Low, B.C., Hundhausen, J.R.: 1995, Magnetostatic structures of the solar corona. II. The magnetic topology of quiescent prominences. Astrophys. J. 443, 818. DOI. ADS.

    Article  ADS  Google Scholar 

  • Luna, M., Karpen, J.T., DeVore, C.R.: 2012, Formation and evolution of a multi-threaded solar prominence. Astrophys. J. 746, 30. DOI. ADS.

    Article  ADS  Google Scholar 

  • Luna, M., Moreno-Insertis, F., Priest, E.: 2015, Are tornado-like magnetic structures able to support solar prominence plasma? Astrophys. J. Lett. 808, L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II—magnetic structure and dynamics. Space Sci. Rev. 151, 333. DOI. ADS.

    Article  ADS  Google Scholar 

  • Majumdar, S., Patel, R., Pant, V.: 2022, On the variation in the volumetric evolution of CMEs from the inner to outer corona. Astrophys. J. 929, 11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Majumdar, S., Pant, V., Patel, R., Banerjee, D.: 2020, Connecting 3D evolution of coronal mass ejections to their source regions. Astrophys. J. 899, 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Martin, S.F.: 2003, Signs of helicity in solar prominences and related features. Adv. Space Res. 32, 1883. DOI. ADS.

    Article  ADS  Google Scholar 

  • Michałek, G., Gopalswamy, N., Yashiro, S.: 2003, A new method for estimating widths, velocities, and source location of halo coronal mass ejections. Astrophys. J. 584, 472. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mierla, M., Inhester, B., Marqué, C., Rodriguez, L., Gissot, S., Zhukov, A.N., Berghmans, D., Davila, J.: 2009, On 3D reconstruction of coronal mass ejections: I. Method description and application to SECCHI-COR data. Solar Phys. 259, 123. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moore, R.L., Cirtain, J.W., Sterling, A.C., Falconer, D.A.: 2010, Dichotomy of solar coronal jets: standard jets and blowout jets. Astrophys. J. 720, 757. DOI. ADS.

    Article  ADS  Google Scholar 

  • Morosan, D.E., Carley, E.P., Hayes, L.A., Murray, S.A., Zucca, P., Fallows, R.A., McCauley, J., Kilpua, E.K.J., Mann, G., Vocks, C., Gallagher, P.T.: 2019, Multiple regions of shock-accelerated particles during a solar coronal mass ejection. Nat. Astron. 3, 452. DOI. ADS.

    Article  ADS  Google Scholar 

  • Müller, D., St. Cyr, O.C., Zouganelis, I., Gilbert, H.R., Marsden, R., Nieves-Chinchilla, T., Antonucci, E., Auchère, F., Berghmans, D., Horbury, T.S., Howard, R.A., Krucker, S., Maksimovic, M., Owen, C.J., Rochus, P., Rodriguez-Pacheco, J., Romoli, M., Solanki, S.K., Bruno, R., Carlsson, M., Fludra, A., Harra, L., Hassler, D.M., Livi, S., Louarn, P., Peter, H., Schühle, U., Teriaca, L., del Toro Iniesta, J.C., Wimmer-Schweingruber, R.F., Marsch, E., Velli, M., De Groof, A., Walsh, A., Williams, D.: 2020, The Solar Orbiter mission. Science overview. Astron. Astrophys. 642, A1. DOI. ADS.

    Article  Google Scholar 

  • Okamoto, T.J., Liu, W., Tsuneta, S.: 2016, Helical motions of fine-structure prominence threads observed by Hinode and IRIS. Astrophys. J. 831, 126. DOI. ADS.

    Article  ADS  Google Scholar 

  • Panasenco, O., Martin, S.F.: 2008, Topological analyses of symmetric eruptive prominences. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity, Astronomical Society of the Pacific Conference Series 383, 243. ADS.

    Google Scholar 

  • Panasenco, O., Martin, S.F., Velli, M.: 2014, Apparent solar tornado-like prominences. Solar Phys. 289, 603. DOI. ADS.

    Article  ADS  Google Scholar 

  • Panasenco, O., Martin, S.F., Velli, M., Vourlidas, A.: 2013, Origins of rolling, twisting, and non-radial propagation of eruptive solar events. Solar Phys. 287, 391. DOI. ADS.

    Article  ADS  Google Scholar 

  • Panesar, N.K., Tiwari, S.K., Moore, R.L., Sterling, A.C., De Pontieu, B.: 2022, Genesis and coronal-jet-generating eruption of a solar minifilament captured by IRIS slit-raster spectra. Astrophys. J. 939, 25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pant, V., Datta, A., Banerjee, D., Chandrashekhar, K., Ray, S.: 2018, Twisting/swirling motions during a prominence eruption as seen from SDO/AIA. Astrophys. J. 860, 80. DOI. ADS.

    Article  ADS  Google Scholar 

  • Parenti, S.: 2014, Solar prominences: observations. Living Rev. Solar Phys. 11, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Patsourakos, S., Vourlidas, A., Stenborg, G.: 2010, The genesis of an impulsive coronal mass ejection observed at ultra-high cadence by AIA on SDO. Astrophys. J. Lett. 724, L188. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The solar dynamics observatory (SDO). Solar Phys. 275, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pettit, E.: 1943, The properties of solar, prominences as related to type. Astrophys. J. 98, 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rust, D.M., Kumar, A.: 1996, Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett. 464, L199. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rust, D.M., LaBonte, B.J.: 2005, Observational evidence of the kink instability in solar filament eruptions and sigmoids. Astrophys. J. Lett. 622, L69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schmieder, B., Guo, Y., Moreno-Insertis, F., Aulanier, G., Yelles Chaouche, L., Nishizuka, N., Harra, L.K., Thalmann, J.K., Vargas Dominguez, S., Liu, Y.: 2013, Twisting solar coronal jet launched at the boundary of an active region. Astron. Astrophys. 559, A1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Seaton, D.B., Berghmans, D., Nicula, B., Halain, J.-P., De Groof, A., Thibert, T., Bloomfield, D.S., Raftery, C.L., Gallagher, P.T., Auchère, F., Defise, J.-M., D’Huys, E., Lecat, J.-H., Mazy, E., Rochus, P., Rossi, L., Schühle, U., Slemzin, V., Yalim, M.S., Zender, J.: 2013, The SWAP EUV imaging telescope part I: instrument overview and pre-flight testing. Solar Phys. 286, 43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y.: 2012, Evidence for the wave nature of an extreme ultraviolet wave observed by the atmospheric imaging assembly on board the solar dynamics observatory. Astrophys. J. 754, 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, C., Wang, Y., Gui, B., Ye, P., Wang, S.: 2011a, Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007. Solar Phys. 269, 389. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y., Su, J., Ibrahim, A.: 2011b, Kinematics and fine structure of an unwinding polar jet observed by the solar dynamic observatory/atmospheric imaging assembly. Astrophys. J. Lett. 735, L43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shibata, K., Uchida, Y.: 1986, Swee** magnetic twist mechanism for the acceleration of jets in the solar atmosphere. Solar Phys. 103, 299. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shibata, K., Masuda, S., Shimojo, M., Hara, H., Yokoyama, T., Tsuneta, S., Kosugi, T., Ogawara, Y.: 1995, Hot-plasma ejections associated with compact-loop solar flares. Astrophys. J. Lett. 451, L83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Song, H., Li, L., Chen, Y.: 2022, Toward a unified explanation for the three-part structure of solar coronal mass ejections. Astrophys. J. 933, 68. DOI. ADS.

    Article  ADS  Google Scholar 

  • Song, H.Q., Zhou, Z.J., Li, L.P., Cheng, X., Zhang, J., Chen, Y., Chen, C.X., Ma, X.W., Wang, B., Zheng, R.S.: 2018, The reversal of a solar prominence rotation about its ascending direction during a failed eruption. Astrophys. J. Lett. 864, L37. DOI. ADS.

    Article  ADS  Google Scholar 

  • Srivastava, A.K., Zaqarashvili, T.V., Kumar, P., Khodachenko, M.L.: 2010, Observation of kink instability during small B5.0 solar flare on 2007 June 4. Astrophys. J. 715, 292. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sterling, A.C., Moore, R.L., Falconer, D.A., Adams, M.: 2015, Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes. Nature 523, 437. DOI. ADS.

    Article  ADS  Google Scholar 

  • Su, Y., van Ballegooijen, A.: 2013, Rotating motions and modeling of the erupting solar polar-crown prominence on 2010 December 6. Astrophys. J. 764, 91. DOI. ADS.

    Article  ADS  Google Scholar 

  • Su, Y., Wang, T., Veronig, A., Temmer, M., Gan, W.: 2012, Solar magnetized “tornadoes:” relation to filaments. Astrophys. J. Lett. 756, L41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Su, Y., Gömöry, P., Veronig, A., Temmer, M., Wang, T., Vanninathan, K., Gan, W., Li, Y.: 2014, Solar magnetized tornadoes: rotational motion in a tornado-like prominence. Astrophys. J. Lett. 785, L2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thernisien, A.: 2011, Implementation of the graduated cylindrical shell model for the three-dimensional reconstruction of coronal mass ejections. Astrophys. J., Suppl. Ser. 194, 33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thernisien, A.F.R., Howard, R.A., Vourlidas, A.: 2006, Modeling of flux rope coronal mass ejections. Astrophys. J. 652, 763. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thernisien, A., Vourlidas, A., Howard, R.A.: 2009, Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys. 256, 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, W.T.: 2011, Strong rotation of an erupting quiescent polar crown prominence. J. Atmos. Solar-Terr. Phys. 73, 1138. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, W.T., Kliem, B., Török, T.: 2012, 3D reconstruction of a rotating erupting prominence. Solar Phys. 276, 241. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465. DOI. ADS.

    Article  ADS  Google Scholar 

  • Török, T., Berger, M.A., Kliem, B.: 2010, The writhe of helical structures in the solar corona. Astron. Astrophys. 516, A49. DOI. ADS.

    Article  ADS  Google Scholar 

  • Török, T., Kliem, B.: 2003, The evolution of twisting coronal magnetic flux tubes. Astron. Astrophys. 406, 1043. DOI. ADS.

    Article  ADS  Google Scholar 

  • Török, T., Kliem, B.: 2005, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, L97. DOI. ADS.

    Article  ADS  Google Scholar 

  • Török, T., Kliem, B., Titov, V.S.: 2004, Ideal kink instability of a magnetic loop equilibrium. Astron. Astrophys. 413, L27. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Tripathi, D., Reeves, K.K., Gibson, S.E., Srivastava, A., Joshi, N.C.: 2013, SDO/AIA observations of a partially erupting prominence. Astrophys. J. 778, 142. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vemareddy, P., Gopalswamy, N., Ravindra, B.: 2017, Prominence eruption initiated by helical kink instability of an embedded flux rope. Astrophys. J. 850, 38. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, H., Cao, W., Liu, C., Xu, Y., Liu, R., Zeng, Z., Chae, J., Ji, H.: 2015, Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope. Nat. Commun. 6, 7008. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, W., Liu, R., Wang, Y., Hu, Q., Shen, C., Jiang, C., Zhu, C.: 2017, Buildup of a highly twisted magnetic flux rope during a solar eruption. Nat. Commun. 8, 1330. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y., Su, Y., Shen, J., Yang, X., Cao, W., Ji, H.: 2018, High-resolution He I 10830 Å narrowband imaging for an M-class flare. II. Multiple hot channels: their origin and destination. Astrophys. J. 859, 148. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, J., Yan, X., Guo, Q., Kong, D., Xue, Z., Yang, L., Li, Q.: 2019, Formation and material supply of an active-region filament associated with newly emerging flux. Mon. Not. Roy. Astron. Soc. 488, 3794. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wedemeyer-Böhm, S., Scullion, E., Steiner, O., Rouppe van der Voort, L., de La Cruz Rodriguez, J., Fedun, V., Erdélyi, R.: 2012, Magnetic tornadoes as energy channels into the solar corona. Nature 486, 505. DOI. ADS.

    Article  ADS  Google Scholar 

  • Williams, D.R., Török, T., Démoulin, P., van Driel-Gesztelyi, L., Kliem, B.: 2005, Eruption of a kink-unstable filament in NOAA active region 10696. Astrophys. J. Lett. 628, L163. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wuelser, J.-P., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., Navarro, R.L., Pearson, J.D., Rossi, G.R., Springer, L.A., Howard, R.A., Moses, J.D., Newmark, J.S., Delaboudiniere, J.-P., Artzner, G.E., Auchere, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J.-Y., Colas, G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet, M.-F., Song, X., Bothmer, V., Deutsch, W.: 2004, EUVI: the STEREO-SECCHI extreme ultraviolet imager. In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 5171, 111. DOI. ADS.

    Chapter  Google Scholar 

  • Wyper, P.F., DeVore, C.R., Antiochos, S.K.: 2018, A breakout model for solar coronal jets with filaments. Astrophys. J. 852, 98. DOI. ADS.

    Article  ADS  Google Scholar 

  • **a, C., Chen, P.F., Keppens, R., van Marle, A.J.: 2011, Formation of solar filaments by steady and nonsteady chromospheric heating. Astrophys. J. 737, 27. DOI. ADS.

    Article  ADS  Google Scholar 

  • **e, H., Ofman, L., Lawrence, G.: 2004, Cone model for halo CMEs: application to space weather forecasting. J. Geophys. Res. Space 109, A03109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xue, X.H., Wang, C.B., Dou, X.K.: 2005, An ice-cream cone model for coronal mass ejections. J. Geophys. Res. Space 110, A08103. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xue, Z., Yan, X., Cheng, X., Yang, L., Su, Y., Kliem, B., Zhang, J., Liu, Z., Bi, Y., **ang, Y., Yang, K., Zhao, L.: 2016, Observing the release of twist by magnetic reconnection in a solar filament eruption. Nat. Commun. 7, 11837. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xue, Z., Yan, X., Yang, L., Wang, J., Zhao, L.: 2017, Observing formation of flux rope by tether-cutting reconnection in the sun. Astrophys. J. Lett. 840, L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yan, X.L., Xue, Z.K., Liu, J.H., Ma, L., Kong, D.F., Qu, Z.Q., Li, Z.: 2014a, Kink instability evidenced by analyzing the leg rotation of a filament. Astrophys. J. 782, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yan, X.L., Xue, Z.K., Liu, J.H., Kong, D.F., Xu, C.L.: 2014b, Unwinding motion of a twisted active region filament. Astrophys. J. 797, 52. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yan, X., Li, Q., Chen, G., Xue, Z., Feng, L., Wang, J., Yang, L., Zhang, Y.: 2020, Dynamics evolution of a solar active-region filament from a quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality. Astrophys. J. 904, 15. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yang, Z., Tian, H., Peter, H., Su, Y., Samanta, T., Zhang, J., Chen, Y.: 2018, Two solar tornadoes observed with the interface region imaging spectrograph. Astrophys. J. 852, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M.: 2021, A revised cone model and its application to non-radial prominence eruptions. Astron. Astrophys. 653, L2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M.: 2022, Tracking the 3D evolution of a halo coronal mass ejection using the revised cone model. Astron. Astrophys. 660, A144. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M., Ji, H.S.: 2014, A swirling flare-related EUV jet. Astron. Astrophys. 561, A134. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M., Chen, P.F., **a, C., Keppens, R.: 2012, Observations and simulations of longitudinal oscillations of an active region prominence. Astron. Astrophys. 542, A52. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M., Ning, Z.J., Guo, Y., Zhou, T.H., Cheng, X., Ji, H.S., Feng, L., Wiegelmann, T.: 2015, Multiwavelength observations of a partially eruptive filament on 2011 September 8. Astrophys. J. 805, 4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M., Li, D., Ning, Z.J., Su, Y.N., Ji, H.S., Guo, Y.: 2016, Explosive chromospheric evaporation in a circular-ribbon flare. Astrophys. J. 827, 27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M., Chen, J.L., Li, S.T., Lu, L., Li, D.: 2022a, Transverse coronal-loop oscillations induced by the non-radial eruption of a magnetic flux rope. Solar Phys. 297, 18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q., Li, C., Li, D., Qiu, Y., Zhang, Y., Ni, Y.: 2022b, First detection of transverse vertical oscillation during the expansion of coronal loops. Astrophys. J. Lett. 937, L21. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, X.P., Plunkett, S.P., Liu, W.: 2002, Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J. Geophys. Res. Space 107, 1223. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhou, Y.-H., Chen, P.-F., Zhang, Q.-M., Fang, C.: 2014, Dependence of the length of solar filament threads on the magnetic configuration. Res. Astron. Astrophys. 14, 581. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zou, P., Jiang, C., Wei, F., Zuo, P., Wang, Y.: 2019, A statistical study of solar filament eruptions that form high-speed coronal mass ejections. Astrophys. J. 884, 157. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the reviewer for valuable and constructive suggestions that improved the quality of this article. We thank Drs. **aoli Yan and Zhike Xue from Yunnan Observatories for helpful discussions. SDO is a mission of NASA’s Living With a Star Program.

Funding

This work is supported by the National Key R&D Program of China 2022YFF0503003 (2022YFF0503000), 2021YFA1600500 (2021YFA1600502), and NSFC grants (No. 11790302, 11790300).

Author information

Authors and Affiliations

Authors

Contributions

Haisheng Ji discovered the rapid rotation of the erupting prominence. Qingmin Zhang performed 3D reconstruction of the related CME. Qingmin Zhang and Yuhao Zhou wrote the main manuscript text and prepared figures and animations. All authors reviewed the manuscript.

Corresponding author

Correspondence to Qingmin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below are the links to the electronic supplementary material.

(MP4 19.1 MB)

(MP4 7.6 MB)

(MP4 3.6 MB)

(MP4 2.6 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Ji, H. & Zhang, Q. Rapid Rotation of an Erupting Prominence and the Associated Coronal Mass Ejection on 13 May 2013. Sol Phys 298, 35 (2023). https://doi.org/10.1007/s11207-023-02126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02126-5

Keywords

Navigation