Log in

Kinematics and Energetics of the EUV Waves on 11 April 2013

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In this study, we present the observations of extreme-ultraviolet (EUV) waves associated with an M6.5 flare on 2013 April 11. The event was observed by Solar Dynamics Observatory (SDO) in different EUV channels. The flare was also associated with a halo CME and type II radio bursts. We observed both fast and slow components of the EUV wave. The speed of the fast component, which is identified as a fast-mode MHD wave, varies in the range from \(600\mbox{ to }640~\mbox{km}\,\mbox{s}^{-1}\), whereas the speed of the slow-component is \({\approx}\,140~\mbox{km}\,\mbox{s}^{-1}\). We observed the unusual phenomenon that, as the fast-component EUV wave passes through two successive magnetic quasi-separatrix layers (QSLs), two stationary wave fronts are formed locally. We propose that part of the outward-propagating fast-mode EUV wave is converted into slow-mode magnetohydrodynamic waves, which are trapped in local magnetic field structures, forming successive stationary fronts. Along the other direction, the fast-component EUV wave also creates oscillations in a coronal loop lying \({\approx}\,225~\mbox{Mm}\) away from the flare site. We have computed the energy of the EUV wave to be of the order of \(10^{20}~\mbox{J}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Asai, A., Ishii, T.T., Isobe, H., Kitai, R., Ichimoto, K., UeNo, S., Nagata, S., Morita, S., Nishida, K., Shiota, D., Oi, A., Akioka, M., Shibata, K.: 2012, First simultaneous observation of an H\(\upalpha\) Moreton wave, EUV wave, and filament/prominence oscillations. Astrophys. J. Lett. 745, L18. DOI . ADS

    Article  Google Scholar 

  • Attrill, G.D.R., Harra, L.K., van Driel-Gesztelyi, L., Démoulin, P.: 2007, Coronal “wave”: magnetic footprint of a coronal mass ejection? Astrophys. J. Lett. 656, L101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Attrill, G.D.R., Engell, A.J., Wills-Davey, M.J., Grigis, P., Testa, P.: 2009, Hinode/XRT and STEREO observations of a diffuse coronal “wave”-coronal mass ejection-dimming event. Astrophys. J. 704, 1296. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ballai, I.: 2007, Global coronal seismology. Solar Phys. 246, 177. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ballai, I., Erdélyi, R., Pintér, B.: 2005, On the nature of coronal EIT waves. Astrophys. J. Lett. 633, L145. DOI . ADS .

    Article  ADS  Google Scholar 

  • Benz, A.O., Thejappa, G.: 1988, Radio emission of coronal shock waves. Astron. Astrophys. 202, 267. ADS .

    ADS  Google Scholar 

  • Biesecker, D.A., Thompson, B.J.: 2002, Can EIT waves be used to predict halo CME properties? In: American Astronomical Society Meeting Abstracts #200, Bulletin of the American Astronomical Society 34, 695.

    Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chandra, R., Schmieder, B., Aulanier, G., Malherbe, J.M.: 2009, Evidence of magnetic helicity in emerging flux and associated flare. Solar Phys. 258, 53. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chandra, R., Schmieder, B., Mandrini, C.H., Démoulin, P., Pariat, E., Török, T., Uddin, W.: 2011, Homologous flares and magnetic field topology in active region NOAA 10501 on 20 November 2003. Solar Phys. 269, 83. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chandra, R., Chen, P.F., Fulara, A., Srivastava, A.K., Uddin, W.: 2016, Peculiar stationary EUV wave fronts in the eruption on 2011 May 11. Astrophys. J. 822, 106. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chandra, R., Chen, P.F., Joshi, R., Joshi, B., Schmieder, B.: 2018, Observations of two successive EUV waves and their mode conversion. Astrophys. J. 863, 101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chen, P.F.: 2009, The relation between EIT waves and coronal mass ejections. Astrophys. J. Lett. 698, L112. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chen, P.F.: 2016, Global Coronal Waves, Geophysical Monograph Series 216, American Geophysical Union, Washington DC, 381. DOI . ADS .

    Book  Google Scholar 

  • Chen, P.: 2017, The continued debate on solar coronal EUV waves. Sci. China Ser. G, Phys. Mech. Astron. 60, 29631. DOI . ADS .

    Article  Google Scholar 

  • Chen, P.F., Fang, C., Shibata, K.: 2005, A full view of EIT waves. Astrophys. J. 622, 1202. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chen, P.F., Wu, Y.: 2011, First evidence of coexisting EIT wave and coronal Moreton wave from SDO/AIA observations. Astrophys. J. Lett. 732, L20. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chen, P.F., Wu, S.T., Shibata, K., Fang, C.: 2002, Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Lett. 572, L99. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chen, P.F., Fang, C., Chandra, R., Srivastava, A.K.: 2016, Can a fast-mode EUV wave generate a stationary front? Solar Phys. 291, 3195. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cheng, X., Zhang, J., Olmedo, O., Vourlidas, A., Ding, M.D., Liu, Y.: 2012, Investigation of the formation and separation of an extreme-ultraviolet wave from the expansion of a coronal mass ejection. Astrophys. J. Lett. 745, L5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cohen, O., Attrill, G.D.R., Manchester, W.B. IV, Wills-Davey, M.J.: 2009, Numerical simulation of an EUV coronal wave based on the 2009 February 13 CME event observed by STEREO. Astrophys. J. 705, 587. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dai, Y., Auchère, F., Vial, J.-C., Tang, Y.H., Zong, W.G.: 2010, Large-scale extreme-ultraviolet disturbances associated with a limb coronal mass ejection. Astrophys. J. 708, 913. DOI . ADS .

    Article  ADS  Google Scholar 

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291. DOI . ADS .

    Article  ADS  Google Scholar 

  • Delannée, C., Aulanier, G.: 1999, CME associated with transequatorial loops and a bald patch flare. Solar Phys. 190, 107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Delannée, C., Hochedez, J.-F., Aulanier, G.: 2007, Stationary parts of an EIT and Moreton wave: a topological model. Astron. Astrophys. 465, 603. DOI . ADS .

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Downs, C., Roussev, I.I., van der Holst, B., Lugaz, N., Sokolov, I.V.: 2012, Understanding SDO/AIA observations of the 2010 June 13 EUV wave event: direct insight from a global thermodynamic MHD simulation. Astrophys. J. 750, 134. DOI .

    Article  ADS  Google Scholar 

  • Gallagher, P.T., Long, D.M.: 2011, Large-scale bright fronts in the solar corona: a review of “EIT waves”. Space Sci. Rev. 158, 365. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gilbert, H.R., Daou, A.G., Young, D., Tripathi, D., Alexander, D.: 2008, The filament-Moreton wave interaction of 2006 December 6. Astrophys. J. 685, 629. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Temmer, M., Davila, J., Thompson, W.T., Jones, S., McAteer, R.T.J., Wuelser, J.-P., Freeland, S., Howard, R.A.: 2009, EUV wave reflection from a coronal hole. Astrophys. J. Lett. 691, L123. DOI . ADS .

    Article  ADS  Google Scholar 

  • Guo, Y., Ding, M.D., Chen, P.F.: 2015, Slow patchy extreme-ultraviolet propagating fronts associated with fast coronal magneto-acoustic waves in solar eruptions. Astrophys. J. Suppl. 219, 36. DOI . ADS .

    Article  ADS  Google Scholar 

  • Guo, Y., Erdélyi, R., Srivastava, A.K., Hao, Q., Cheng, X., Chen, P.F., Ding, M.D., Dwivedi, B.N.: 2015, Magnetohydrodynamic seismology of a coronal loop system by the first two modes of standing kink waves. Astrophys. J. 799, 151. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harra, L.K., Sterling, A.C.: 2003, Imaging and spectroscopic investigations of a solar coronal wave: properties of the wave front and associated erupting material. Astrophys. J. 587, 429. DOI . ADS .

    Article  ADS  Google Scholar 

  • Janvier, M.: 2017, Three-dimensional magnetic reconnection and its application to solar flares. J. Plasma Phys. 83, 535830101. DOI . ADS .

    Article  Google Scholar 

  • **, M., Ding, M.D., Chen, P.F., Fang, C., Imada, S.: 2009, Coronal mass ejection induced outflows observed with Hinode/EIS. Astrophys. J. 702, 27. DOI . ADS .

    Article  ADS  Google Scholar 

  • Joshi, B., Kushwaha, U., Veronig, A.M., Dhara, S.K., Shanmugaraju, A., Moon, Y.-J.: 2017, Formation and eruption of a flux rope from the sigmoid active region NOAA 11719 and associated M6.5 flare: a multi-wavelength study. Astrophys. J. 834, 42. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kienreich, I.W., Muhr, N., Veronig, A.M., Berghmans, D., De Groof, A., Temmer, M., Vršnak, B., Seaton, D.B.: 2013, Solar TErrestrial Relations Observatory-A (STEREO-A) and PRoject for on-board autonomy 2 (PROBA2) quadrature observations of reflections of three EUV waves from a coronal hole. Solar Phys. 286, 201. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kondo, T., Isobe, T., Igi, S., Watari, S., Tokimura, M.: 1995, The Hiraiso Radio Spectrograph (HiRAS) for monitoring solar radio bursts. J. Commun. Res. Lab. 42(1), 111. ADS .

    Google Scholar 

  • Kumar, P., Cho, K.-S., Chen, P.F., Bong, S.-C., Park, S.-H.: 2013, Multiwavelength study of a solar eruption from AR NOAA 11112: II. Large-scale coronal wave and loop oscillation. Solar Phys. 282, 523. DOI .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, W., Ofman, L.: 2014, Advances in observing various coronal EUV waves in the SDO era and their seismological applications (invited review). Solar Phys. 289, 3233. DOI . ADS .

    Article  ADS  Google Scholar 

  • Long, D.M., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2008, The kinematics of a globally propagating disturbance in the solar corona. Astrophys. J. Lett. 680, L81. DOI . ADS .

    Article  ADS  Google Scholar 

  • Long, D.M., Baker, D., Williams, D.R., Carley, E.P., Gallagher, P.T., Zucca, P.: 2015, The energetics of a global shock wave in the low solar corona. Astrophys. J. 799, 224. DOI . ADS .

    Article  ADS  Google Scholar 

  • Long, D.M., Bloomfield, D.S., Chen, P.F., Downs, C., Gallagher, P.T., Kwon, R.-Y., Vanninathan, K., Veronig, A.M., Vourlidas, A., Vršnak, B., Warmuth, A., Žic, T.: 2017, Understanding the physical nature of coronal “EIT waves”. Solar Phys. 292, 7. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lulić, S., Vršnak, B., Žic, T., Kienreich, I.W., Muhr, N., Temmer, M., Veronig, A.M.: 2013, Formation of coronal shock waves. Solar Phys. 286, 509. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ma, S., Raymond, J.C., Golub, L., Lin, J., Chen, H., Grigis, P., Testa, P., Long, D.: 2011, Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. Astrophys. J. 738, 160. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mann, G., Klassen, A., Aurass, H., Classen, H.T.: 2003, Development of shocks waves in the solar corona and the interplanetary space. In: Solar Wind Ten, American Institute of Physics Conference Series 679, 612. DOI . ADS .

    Chapter  Google Scholar 

  • Mei, Z., Udo, Z., Lin, J.: 2012, Numerical experiments of disturbance to the solar atmosphere caused by eruptions. Sci. China Ser. G, Phys. Mech. Astron. 55, 1316. DOI . ADS .

    Article  ADS  Google Scholar 

  • Moses, D., Clette, F., Delaboudinière, J.-P., Artzner, G.E., Bougnet, M., Brunaud, J., Carabetian, C., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Newmark, J., Thompson, B., Maucherat, A., Portier-Fozzani, F., Berghmans, D., Cugnon, P., van Dessel, E.L., Gabryl, J.R.: 1997, EIT observations of the extreme ultraviolet sun. Solar Phys. 175, 571. DOI . ADS .

    Article  ADS  Google Scholar 

  • Muhr, N., Veronig, A.M., Kienreich, I.W., Temmer, M., Vršnak, B.: 2011, Analysis of characteristic parameters of large-scale coronal waves observed by the Solar-Terrestrial Relations Observatory/Extreme Ultraviolet Imager. Astrophys. J. 739, 89. DOI . ADS .

    Article  ADS  Google Scholar 

  • Muhr, N., Veronig, A.M., Kienreich, I.W., Vršnak, B., Temmer, M., Bein, B.M.: 2014, Statistical analysis of large-scale EUV waves observed by STEREO/EUVI. Solar Phys. 289, 4563. DOI . ADS .

    Article  ADS  Google Scholar 

  • Newkirk, G. Jr.: 1961, The solar corona in active regions and the thermal origin of the slowly varying component of solar radio radiation. Astrophys. J. 133, 983. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nitta, N.V., Schrijver, C.J., Title, A.M., Liu, W.: 2013, Large-scale coronal propagating fronts in solar eruptions as observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory – an ensemble study. Astrophys. J. 776, 58. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ouyang, Y., Zhou, Y.H., Chen, P.F., Fang, C.: 2017, Chirality and magnetic configurations of solar filaments. Astrophys. J. 835, 94. DOI . ADS .

    Article  ADS  Google Scholar 

  • Patsourakos, S., Vourlidas, A.: 2009, “Extreme ultraviolet waves” are waves: first quadrature observations of an extreme ultraviolet wave from STEREO. Astrophys. J. Lett. 700, L182. DOI . ADS .

    Article  ADS  Google Scholar 

  • Patsourakos, S., Vourlidas, A.: 2012, On the nature and genesis of EUV waves: a synthesis of observations from SOHO, STEREO, SDO, and Hinode (invited review). Solar Phys. 281, 187. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schmidt, J.M., Ofman, L.: 2010, Global simulation of an Extreme Ultraviolet Imaging Telescope wave. Astrophys. J. 713, 1008. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schmieder, B., Aulanier, G., Vršnak, B.: 2015, Flare-CME models: an observational perspective (invited review). Solar Phys. 290, 3457. DOI .

    Article  ADS  Google Scholar 

  • Sterling, A.C., Hudson, H.S.: 1997, Yohkoh SXT observations of X-ray “dimming” associated with a halo coronal mass ejection. Astrophys. J. Lett. 491, L55. DOI .

    Article  ADS  Google Scholar 

  • Su, W., Cheng, X., Ding, M.D., Chen, P.F., Ning, Z.J., Ji, H.S.: 2016, Investigating the conditions of the formation of a Type II radio burst on 2014 January 8. Astrophys. J. 830, 70. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thompson, B.J., Myers, D.C.: 2009, A catalog of coronal “EIT wave” transients. Astrophys. J. 183, 225. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465. DOI . ADS .

    Article  ADS  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61. DOI .

    Article  ADS  Google Scholar 

  • Vemareddy, P., Mishra, W.: 2015, A full study on the Sun–Earth connection of an Earth-directed CME magnetic flux rope. Astrophys. J. 814, 59. DOI . ADS .

    Article  ADS  Google Scholar 

  • Veronig, A.M., Temmer, M., Vršnak, B.: 2008, High-cadence observations of a global coronal wave by STEREO EUVI. Astrophys. J. Lett. 681, L113. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M.: 2000, EIT waves and fast-mode propagation in the solar corona. Astrophys. J. Lett. 543, L89. DOI .

    Article  ADS  Google Scholar 

  • Wang, T., Yan, Y., Wang, J., Kurokawa, H., Shibata, K.: 2002, The large-scale coronal field structure and source region features for a halo coronal mass ejection. Astrophys. J. 572, 580. DOI . ADS .

    Article  ADS  Google Scholar 

  • Warmuth, A.: 2007, Large-scale Waves and Shocks in the Solar Corona, Lecture Notes in Physics 725, Springer, Berlin, 107.

    Google Scholar 

  • Warmuth, A.: 2010, Large-scale waves in the solar corona: the continuing debate. Adv. Space Res. 45, 527. DOI . ADS .

    Article  ADS  Google Scholar 

  • Warmuth, A.: 2015, Large-scale globally propagating coronal waves. Living Rev. Solar Phys. 12, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Webb, D.F., Lep**, R.P., Burlaga, L.F., DeForest, C.E., Larson, D.E., Martin, S.F., Plunkett, S.P., Rust, D.M.: 2000, The origin and development of the May 1997 magnetic cloud. J. Geophys. Res. 105, 27251. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wills-Davey, M.J., Attrill, G.D.R.: 2009, EIT waves: a changing understanding over a solar cycle. Space Sci. Rev. 149, 325. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wills-Davey, M.J., Thompson, B.J.: 1999, Observations of a propagating disturbance in TRACE. Solar Phys. 190, 467. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wu, S.T., Zheng, H., Wang, S., Thompson, B.J., Plunkett, S.P., Zhao, X.P., Dryer, M.: 2001, Three-dimensional numerical simulation of MHD waves observed by the Extreme Ultraviolet Imaging Telescope. J. Geophys. Res. 106, 25089. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zheng, R., Chen, Y., Feng, S., Wang, B., Song, H.: 2018, An extreme-ultraviolet wave generating upward secondary waves in a streamer-like solar structure. Astrophys. J. Lett. 858, L1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhou, X-p., Liang, H-f.: 2017, A study on the fast solar corona extreme-ultraviolet wave associated with a coronal mass ejection. Chin. J. Astron. Astrophys. 41, 224. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhukov, A.N.: 2011, EIT wave observations and modeling in the STEREO era. J. Atmos. Solar-Terr. Phys. 73, 1096. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhukov, A.N., Auchère, F.: 2004, On the nature of EIT waves, EUV dimmings and their link to CMEs. Astron. Astrophys. 427, 705. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zong, W., Dai, Y.: 2017, Mode conversion of a solar extreme-ultraviolet wave over a coronal cavity. Astrophys. J. Lett. 834, L15. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zucca, P., Carley, E.P., Bloomfield, D.S., Gallagher, P.T.: 2014, The formation heights of coronal shocks from 2D density and Alfvén speed maps. Astron. Astrophys. 564, A47. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for the useful comments and suggestions that helped us to improve the manuscript. We also acknowledge the use of SDO and GONG data. PFC was supported by the Chinese grants NSFC 11533005, U1731241 and Jiangsu 333 Project (No. BRA2017359). AF and RC acknowledge the support from the ISRO/RESPOND project. The work of IZh and RC was supported by the Bulgarian Science Fund under Indo–Bulgarian bilateral project DNTS/INDIA 01/7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarti Fulara.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fulara, A., Chandra, R., Chen, P.F. et al. Kinematics and Energetics of the EUV Waves on 11 April 2013. Sol Phys 294, 56 (2019). https://doi.org/10.1007/s11207-019-1445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1445-3

Keywords

Navigation