Log in

Estimating Total Open Heliospheric Magnetic Flux

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Over the solar-activity cycle, there are extended periods where significant discrepancies occur between the spacecraft-observed total (unsigned) open magnetic flux and that determined from coronal models. In this article, the total open heliospheric magnetic flux is computed using two different methods and then compared with results obtained from in-situ interplanetary magnetic-field observations. The first method uses two different types of photospheric magnetic-field maps as input to the Wang–Sheeley–Arge (WSA) model: i) traditional Carrington or diachronic maps, and ii) Air Force Data Assimilative Photospheric Flux Transport model synchronic maps. The second method uses observationally derived helium and extreme-ultraviolet coronal-hole maps overlaid on the same magnetic-field maps in order to compute total open magnetic flux. The diachronic and synchronic maps are both constructed using magnetograms from the same source, namely the National Solar Observatory Kitt Peak Vacuum Telescope and Vector Spectromagnetograph. The results of this work show that the total open flux obtained from observationally derived coronal holes agrees remarkably well with that derived from WSA, especially near solar minimum. This suggests that, on average, coronal models capture well the observed large-scale coronal-hole structure over most of the solar cycle. Both methods show considerable deviations from total open flux deduced from spacecraft data, especially near solar maximum, pointing to something other than poorly determined coronal-hole area specification as the source of these discrepancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9, 131. DOI . ADS .

    Article  ADS  Google Scholar 

  • Arden, W.M., Norton, A.A., Sun, X.: 2014, A “breathing” source surface for cycles 23 and 24. J. Geophys. Res. 119, 1476. DOI . ADS .

    Article  Google Scholar 

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465. DOI . ADS .

    Article  ADS  Google Scholar 

  • Arge, C.N., Hildner, E., Pizzo, V.J., Harvey, J.W.: 2002, Two solar cycles of nonincreasing magnetic flux. J. Geophys. Res. 107, 1319. DOI . ADS .

    Article  Google Scholar 

  • Arge, C.N., Harvey, K.L., Hudson, H.S., Kahler, S.W.: 2003b, Narrow coronal holes in Yohkoh soft X-ray images and the slow solar wind. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten CS-679, Am. Inst. Phys., Melville, 202. DOI . ADS .

    Chapter  Google Scholar 

  • Arge, C.N., Odstrcil, D., Pizzo, V.J., Mayer, L.R.: 2003a, Improved method for specifying solar wind speed near the Sun. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten CS-679, Am. Inst. Phys., Melville, 190. DOI . ADS .

    Chapter  Google Scholar 

  • Arge, C.N., Luhmann, J.G., Odstrcil, D., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar-Terr. Phys. 66, 1295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Arge, C.N., Henney, C.J., Koller, J., Compeau, C.R., Young, S., MacKenzie, D., Fay, A., Harvey, J.W.: 2010, Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Solar Wind 12 CS-1216, Am. Inst. Phys., Melville, 343. DOI . ADS .

    Chapter  Google Scholar 

  • Arge, C.N., Henney, C.J., Koller, J., Toussaint, W.A., Harvey, J.W., Young, S.: 2011, Improving data drivers for coronal and solar wind models. In: Pogorelov, N.V., Audit, E., Zank, G.P. (eds.) 5th International Conference of Numerical Modeling of Space Plasma Flows, Astronum 2010, CS-444, Astron. Soc. Pacific, San Francisco, 99. ADS .

    Google Scholar 

  • Arge, C.N., Henney, C.J., Hernandez, I.G., Toussaint, W.A., Koller, J., Godinez, H.C.: 2013, Modeling the corona and solar wind using ADAPT maps that include far-side observations. In: Zank, G.P., Borovsky, J., Bruno, R., Cirtain, J., Cranmer, S., Elliott, H., Giacalone, J., Gonzalez, W., Li, G., Marsch, E., Moebius, E., Pogorelov, N., Spann, J., Verkhoglyadova, O. (eds.) Solar Wind 13 CS-1539, Am. Inst. Phys., Melville, 11. DOI . ADS .

    Chapter  Google Scholar 

  • Boucheron, L.E., Valluri, M., McAteer, R.T.J.: 2016, Segmentation of coronal holes using active contours without edges. Solar Phys. 291, 2353. DOI . ADS .

    Article  ADS  Google Scholar 

  • Caplan, R.M., Downs, C., Linker, J.A.: 2016, Synchronic coronal hole map** using multi-instrument EUV images: data preparation and detection method. Astrophys. J. 823, 53. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cranmer, S.R.: 2009, Coronal holes. Living Rev. Solar Phys. 6, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • de Toma, G., Arge, C.N., Riley, P.: 2005, Observed and modeled coronal holes. AGU Spring Meet. Abs., SH24A. ADS .

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291. DOI . ADS .

    Article  ADS  Google Scholar 

  • Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497. DOI . ADS .

    Article  ADS  Google Scholar 

  • Garton, T.M., Gallagher, P.T., Murray, S.A.: 2018, Automated coronal hole identification via multi-thermal intensity segmentation. J. Space Weather Space Clim. 8, A02. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hamada, A., Asikainen, T., Virtanen, I., Mursula, K.: 2018, Automated identification of coronal holes from synoptic EUV maps. Solar Phys. 293, 71. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harvey, J.W.: 2013, The Sun in time. Space Sci. Rev. 176, 47. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harvey, K.L., Recely, F.: 2002, Polar coronal holes during Cycles 22 and 23. Solar Phys. 211, 31. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harvey, J.W., Sheeley, N.R. Jr.: 1977, A comparison of He II 304 Å and He I 10,830 Å spectroheliograms. Solar Phys. 54, 343. DOI . ADS .

    Article  ADS  Google Scholar 

  • Henney, C.J., Harvey, J.W.: 2005, Automated coronal hole detection using He 1083 nm spectroheliograms and photospheric magnetograms. In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (eds.) Large-Scale Structures and Their Role in Solar Activity CS-346, Astron. Soc. Pacific, San Francisco, 261. ADS .

    Google Scholar 

  • Henney, C.J., Keller, C.U., Harvey, J.W., Georgoulis, M.K., Hadder, N.L., Norton, A.A., Raouafi, N.-E., Toussaint, R.M.: 2009, SOLIS vector spectromagnetograph: status and science. In: Berdyugina, S.V., Nagendra, K.N., Ramelli, R. (eds.) Solar Polarization 5 CS-405, Astron. Soc. Pacific, San Francisco, 47. ADS .

    Google Scholar 

  • Hickmann, K.S., Godinez, H.C., Henney, C.J., Arge, C.N.: 2015, Data assimilation in the ADAPT photospheric flux transport model. Solar Phys. 290, 1105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hoeksema, J.T., Wilcox, J.M., Scherrer, P.H.: 1983, The structure of the heliospheric current sheet – 1978 – 1982. J. Geophys. Res. 88, 9910. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jones, H.P., Duvall, T.L. Jr., Harvey, J.W., Mahaffey, C.T., Schwitters, J.D., Simmons, J.E.: 1992, The NASA/NSO spectromagnetograph. Solar Phys. 139, 211. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO Mission: an introduction. Space Sci. Rev. 136, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys. 256, 87. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lee, C.O., Luhmann, J.G., Hoeksema, J.T., Sun, X., Arge, C.N., de Pater, I.: 2011, Coronal field opens at lower height during the solar cycles 22 and 23 minimum periods: IMF comparison suggests the source surface should be lowered. Solar Phys. 269, 367. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Linker, J.A., Mikić, Z., Riley, P., Downs, C., Lionello, R., Henney, C., Arge, C.N.: 2013, Coronal and heliospheric modeling using flux-evolved maps. In: Zank, G.P., Borovsky, J., Bruno, R., Cirtain, J., Cranmer, S., Elliott, H., Giacalone, J., Gonzalez, W., Li, G., Marsch, E., Moebius, E., Pogorelov, N., Spann, J., Verkhoglyadova, O. (eds.) Solar Wind 13 CS-1539, Am. Inst. Phys., Melville, 26. DOI . ADS .

    Chapter  Google Scholar 

  • Linker, J.A., Caplan, R.M., Downs, C., Lionello, R., Riley, P., Mikic, Z., Henney, C.J., Arge, C.N., Kim, T., Pogorelov, N.: 2016, An empirically driven time-dependent model of the solar wind. J. Phys. Conf. Ser. 719, 012012.

    Article  Google Scholar 

  • Linker, J.A., Caplan, R.M., Downs, C., Riley, P., Mikic, Z., Lionello, R., Henney, C.J., Arge, C.N., Liu, Y., Derosa, M.L., Yeates, A., Owens, M.J.: 2017, The open flux problem. Astrophys. J. 848, 70. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lionello, R., Linker, J.A., Mikić, Z.: 2009, Multispectral emission of the Sun during the first whole Sun month: magnetohydrodynamic simulations. Astrophys. J. 690, 902. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lockwood, M., Owens, M.: 2009, The accuracy of using the Ulysses result of the spatial invariance of the radial heliospheric field to compute the open solar flux. Astrophys. J. 701, 964. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lockwood, M., Owens, M., Rouillard, A.P.: 2009a, Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass. J. Geophys. Res. 114, A11103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lockwood, M., Owens, M., Rouillard, A.P.: 2009b, Excess open solar magnetic flux from satellite data: 2. A survey of kinematic effects. J. Geophys. Res. 114, A11104. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lockwood, M., Forsyth, R., Balogh, A., McComas, D.: 2004, Open solar flux estimates from near-Earth measurements of the interplanetary magnetic field: comparison of the first two perihelion passes of the Ulysses spacecraft. Ann. Geophys. 22, 1395. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lowder, C., Qiu, J., Leamon, R.: 2017, Coronal holes and open magnetic flux over Cycles 23 and 24. Solar Phys. 292, 18. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lowder, C., Qiu, J., Leamon, R., Liu, Y.: 2014, Measurements of EUV coronal holes and open magnetic flux. Astrophys. J. 783, 142. DOI . ADS .

    Article  ADS  Google Scholar 

  • Owens, M.J., Crooker, N.U.: 2006, Coronal mass ejections and magnetic flux buildup in the heliosphere. J. Geophys. Res. 111, A10104. DOI . ADS .

    Article  ADS  Google Scholar 

  • Owens, M.J., Crooker, N.U., Lockwood, M.: 2011, How is open solar magnetic flux lost over the solar cycle? J. Geophys. Res. 116, A04111. DOI . ADS .

    Article  ADS  Google Scholar 

  • Owens, M.J., Schwadron, N.A., Crooker, N.U., Hughes, W.J., Spence, H.E.: 2007, Role of coronal mass ejections in the heliospheric Hale cycle. Geophys. Res. Lett. 34, L06104. DOI . ADS .

    Article  ADS  Google Scholar 

  • Owens, M.J., Arge, C.N., Crooker, N.U., Schwadron, N.A., Horbury, T.S.: 2008a, Estimating total heliospheric magnetic flux from single-point in situ measurements. J. Geophys. Res. 113, A12103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Owens, M.J., Spence, H.E., McGregor, S., Hughes, W.J., Quinn, J.M., Arge, C.N., Riley, P., Linker, J., Odstrcil, D.: 2008b, Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations. Space Weather 6, S08001. DOI . ADS .

    Article  ADS  Google Scholar 

  • Owens, M.J., Lockwood, M., Riley, P., Linker, J.: 2017, Sunward strahl: A method to unambiguously determine open solar flux from in situ spacecraft measurements using suprathermal electron data. J. Geophys. Res. 122, 10. DOI . ADS .

    Article  Google Scholar 

  • Pattchis, M.S., Venkatesh, J., Hock, R.A., Henney, C.J., Arge, C.N.: 2014, Detecting coronal holes for solar activity modeling. In: 48th Asilomar Conference on Signals, Systems and Computers, Curran Associates, Red Hook, 89. DOI .

    Chapter  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Riley, P.: 2007, An alternative interpretation of the relationship between the inferred open solar flux and the interplanetary magnetic field. Astrophys. J. Lett. 667, L97. DOI . ADS .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z., Lionello, R., Ledvina, S.A., Luhmann, J.G.: 2006, A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510. DOI . ADS .

    Article  ADS  Google Scholar 

  • Riley, P., Ben-Nun, M., Linker, J.A., Mikic, Z., Svalgaard, L., Harvey, J., Bertello, L., Hoeksema, T., Liu, Y., Ulrich, R.: 2014, A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms. Solar Phys. 289, 769. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scholl, I.F., Habbal, S.R.: 2008, Automatic detection and classification of coronal holes and filaments based on EUV and magnetogram observations of the solar disk. Solar Phys. 248, 425. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Smith, E.J., Balogh, A., Forsyth, R.J., McComas, D.J.: 2001, Ulysses in the south polar cap at solar maximum: Heliospheric magnetic field. Geophys. Res. Lett. 28, 4159. DOI . ADS .

    Article  ADS  Google Scholar 

  • Svalgaard, L.: 2006, Polar fields, large-scale fields, “magnetic memory”, and solar cycle prediction (accessed on 12 July 2018). www.predsci.com/~pete/research/magnetogram-workshops/1st-workshop/presentations/Leif_Svalgaard_SC24Pred_06.pdf .

  • Svalgaard, L., Duvall, T.L. Jr., Scherrer, P.H.: 1978, The strength of the Sun’s polar fields. Solar Phys. 58, 225. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tsuneta, S., Ichimoto, K., Katsukawa, Y., Lites, B.W., Matsuzaki, K., Nagata, S., Orozco Suárez, D., Shimizu, T., Shimojo, M., Shine, R.A., Suematsu, Y., Suzuki, T.K., Tarbell, T.D., Title, A.M.: 2008, The magnetic landscape of the Sun’s polar region. Astrophys. J. 688, 1374. DOI . ADS .

    Article  ADS  Google Scholar 

  • Verbeeck, C., Delouille, V., Mampaey, B., De Visscher, R.: 2014, The SPoCA-suite: Software for extraction, characterization, and tracking of active regions and coronal holes on EUV images. Astron. Astrophys. 561, A29. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Lean, J., Sheeley, N.R. Jr.: 2000, The long-term variation of the Sun’s open magnetic flux. Geophys. Res. Lett. 27, 505. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1992, On potential field models of the solar corona. Astrophys. J. 392, 310. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1995, Solar implications of ULYSSES interplanetary field measurements. Astrophys. J. Lett. 447, L143. DOI . ADS .

    Article  ADS  Google Scholar 

  • Worden, J., Harvey, J.: 2000, An evolving synoptic magnetic flux map and implications for the distribution of photospheric magnetic flux. Solar Phys. 195, 247. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Air Force Scholars Program. We acknowledge use of NASA/GSFC’s Space Physics Data Facility’s OMNIWeb service and OMNI data. This work utilizes ADAPT maps produced collaboratively between AFRL and NSO/NISP. NSO/Kitt Peak data used here are produced cooperatively by NSF/NSO, NASA/GSFC, and NOAA/SEL. SOLIS data for this work are obtained and managed by NSO/NISP, operated by AURA, Inc. under a cooperative agreement with NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wallace.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallace, S., Arge, C.N., Pattichis, M. et al. Estimating Total Open Heliospheric Magnetic Flux. Sol Phys 294, 19 (2019). https://doi.org/10.1007/s11207-019-1402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1402-1

Keywords

Navigation