Log in

Effect of Pore Size on Strength and Fracture Toughness of Zirconia Ceramics

  • Published:
Russian Physics Journal Aims and scope

The deformation behavior of ZrO2 under compression of cylindrical and three point bending of V-notched beam-shaped samples has been investigated. The ceramics possess 50% porosity and the average pore size varying from 10 to 300 μm. It is shown that the formation of stochastic porosity and further increase in the average pore size lead to a multiple strength decrease relative to a non-porous sample. At the same time, the deformation behavior changes from elastic to pseudoplastic one reflected by the appearance of many local minima in the deformation curves and the increase in the relative ultimate strain. A plateau is found in the fracture toughness dependence on the pore size due to the increase in the main crack trajectory running mainly between the pores. In addition, the formation of multiple microcracks is found, also preventing the development of the main crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Thamaraiselvi and S. Rajeswari, Carbon, 24 (31), 172 (2004).

    Google Scholar 

  2. H. Jodati, B. Yılmaz, and Z. Evis, Ceram. Int., 46, No. 10, 15725 (2020).

    Article  Google Scholar 

  3. N. L. Savchenko, T. Yu. Sablina, I. N. Sevostyanova, et al., Rus. Phys. J., 58, No. 11, 1544 (2016).

    Article  Google Scholar 

  4. B. A. Latella, B. O’Conner, N. P. Padture, J. Am. Ceram. Soc., 80 (4), 1027 (1997).

    Article  Google Scholar 

  5. A. S. Buyakov, Rus. Phys. J., 66 No. 1, 58 (2023).

    Article  Google Scholar 

  6. G. Bernard–Granger and C. Guizard, Acta Mater., 56 (20), 6273 (2008).

    Article  ADS  Google Scholar 

  7. N. Shaw, Powder Metall. Int., 21 (1989).

  8. R. J. Brook, ed., Concise Encyclopedia of Advanced Ceramic Materials, Pergamon Press (1991).

  9. R. Srinivasan, L. Rice, B. Davis, J. Am. Ceram. Soc., 73, No. 11, 3528 (1990).

    Article  Google Scholar 

  10. J. Li, Z. Tang, Z. Zang, and S. Luo, Mater. Sci. Eng. B, 99, No. 1, 321 (2003).

    Article  Google Scholar 

  11. M. Mirkhalaf, A. Sunesara, B. Ashrafi, and F. Barthelat, Int. J. Solids Struct., 158, 52 (2019).

    Article  Google Scholar 

  12. T. Krause, A. Molotnikov, M. V. Carlesso, et al., Adv. Eng. Mater., 14 (5), 335 (2012).

    Article  Google Scholar 

  13. O. K. Lepakova, V. I. Itin, E. G. Astafurova, et al. Phys. Mesomech., No. 2, 108 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Buyakov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buyakov, A.S., Senkina, E.I., Fotin, I.A. et al. Effect of Pore Size on Strength and Fracture Toughness of Zirconia Ceramics. Russ Phys J (2024). https://doi.org/10.1007/s11182-024-03181-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11182-024-03181-6

Keywords

Navigation