Log in

Multicomponent Powder Initial Composition and Phase Formation in Combustion Synthesis Products

  • Published:
Russian Physics Journal Aims and scope

The paper proposes and numerically investigates the model of combustion synthesis of composite material from the multicomponent powder mixture Ti–Al–C–Fe2O3, and presents a complete schematic of the synthesis process with regard to the dependence of the powder mixture properties on its structure and composition. It is found that the major phases are TiC, Al2O3, FeAl, FeAl3 as well as TiFe intermetallic and Fe. The reaction rate depends on the weight fraction Y of the two stoichiometric mixture components (1–Y)(Ti + C) + Y∙(Fe2O3 + 2Al)), the minimum of which is 0.43±0.2. The results obtained at Y → 0 and Y → 1 confirm the model correctness for thermodynamic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Tinklepaugh and W. B. Crandall, in: Cermets: A Symposium. Reinhold Publishing Corporation (1960).

  2. A. P. Amosov, A. R. Samboruk, I. V. Yatsenko, and V. V. Yatsenko, Vestnik PNIPU. Mashinostroenie, materialovedenie, 20, No. 4, 5–14 (2018).

  3. Saidi A., Chrysanthou A., Wood J. V., et al., Int. J. Self-Propag. High-Temp. Synth., 15, 85–98 (2006).

    Google Scholar 

  4. B. Bendjemil, K. Zemmour, M. Guerioune, et al., Int. J. Self-Propag. High-Temp. Synth., 15, 85–98 (2006).

    Google Scholar 

  5. V. P. Kobyakov, N. V. Sachkova, and М. А. Sichinava, Inorg. Mater., 46, No. 12, 1396–1401 (2010).

    Article  Google Scholar 

  6. I. V. Yatsenko, A. R. Samboruk, and E. A. Kuznets, Vestnik Samar. Gos. Tekhn.

  7. Univ. Ser. Tekhnicheskie nauki, No. 1(53), 165–173 (2017).

  8. A. P. Amosov, A. R. Samboruk, I. V. Yatsenko, and V. V. Yatsenko, Int. J. Self-Propag. High-Temp. Synth., 28, 10–17 (2019).

    Article  Google Scholar 

  9. A. Makino, Prog. Energy Combust. Sci., 27, 1–74 (2001).

    Article  Google Scholar 

  10. Yu. A. Chumakov, A. G. Knyazeva, and G. A. Pribytkov, Theor. Found. Chem. En., 55, No. 3, 490–503 (2021).

    Article  Google Scholar 

  11. V. A. Kireev, Calculation Techniques in Thermodynamics of Chemical Reactions [in Russian], Khimiya, Moscow (1970).

  12. M. Kh. Karapet’yants and M. L. Karapet’yants, The Main Thermodynamic Constants of Inorganic and Organic Substances [in Russian], 2019.

  13. G. Liu, J. Li, and K. Chen, Int. J. Refract. Metals Hard Mater., 39, 90–102 (2013).

    Article  Google Scholar 

  14. Y. A. Chumakov and A. G. Knyazeva, High Temp. Mater. Process., 25, 507–514 (2021).

    Article  Google Scholar 

  15. I. P. Bazarov, Thermodynamics [in Russian], Vysshaya shkola, Moscow (1991).

  16. A. A. Samarskii and P. N. Vabishchevich, Computational Heat Transfer [in Russian], Editorial URSS, Moscow (2003).

  17. A. A. Samarskii, The Theory of Difference Schemes, CRC Press, New York (2001).

    Book  MATH  Google Scholar 

  18. G. Tichá, W. Pabst, and D. S. Smith, J. Mater. Sci., 40, 5045–5047 (2005).

    Article  ADS  Google Scholar 

  19. V. V. Skorokhod, Rheological Foundations of Sintering Theory [in Russian], Naukova dumka, Kiev (1976).

  20. Yu. A. Chumakov and A. Knyazeva, Combust. Explo. Shock., 46, No. 5, 507–514 (2010).

    Article  Google Scholar 

  21. A. G. Knyazeva and O. N. Kryukova, Appl. Solid State Chem., No. 1, 32–44 (2019).

  22. W. Gąsior and A. Dębski, Arch. Metall. Mater., 57, 1095–1105 (2012).

    Article  Google Scholar 

  23. S. A. Bochkareva, N. Yu. Grishaeva, B. A. Lyukshin, et al., Fizich. Mezomekh., 23, No. 4, 43–50 (2020).

    Google Scholar 

  24. I. M. Poletika, T. A. Krylova, M. V. Tetyutskaya, and S. A. Makarov, Weld. Int., 27, 508–515 (2013).

    Article  Google Scholar 

  25. I. M. Poletika, T. A. Krylova, Y. F. Ivanov, et al., Prot. Met. Phys. Chem. Surf., 48, 221–232 (2012).

    Article  Google Scholar 

  26. I. M. Poletika, Y. F. Ivanov, M. G. Golkovskii, et al., Inorg. Mater. Appl. Res., 2, 531–539 (2011).

    Article  Google Scholar 

  27. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., Physical Quantities: Handbook [in Russian], Energoatomizdat, Moscow (1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Chumakov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 62–69, April, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumakov, Y.A. Multicomponent Powder Initial Composition and Phase Formation in Combustion Synthesis Products. Russ Phys J 65, 654–662 (2022). https://doi.org/10.1007/s11182-022-02681-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02681-7

Keywords

Navigation