Log in

Copolymerization of l-lactide and ε-caprolactone using aluminum aminobisphenolate as an initiator: a quantum chemical study

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The ring-opening homopolymerization and copolymerization of ε-caprolactone (CL) and l-lactide (LA) in the presence of an aluminum complex with aminobisphenolate ligand MeN{CH2[(3-But)C6H3(2-O−)]}2Al−OMe (LAl−OMe) was modeled in terms of the density functional theory (DFT). The structures of transition states and intermediates were optimized for the initiation stage of the polymerization of CL and LA and for the first stage of the chain propagation reactions affording LAl−LA−LA−OMe, LAl−LA−CL−OMe, LAl−CL−LA−OMe, or LAl−CL−CL−OMe. The barriers to the rate-limiting stages were determined. A fundamental reactivity difference between CL and LA was established. It is associated with the formation of a stable chelate intermediate whose stability governs the distribution of monomeric units in the copolymer. The LAl−OMe complex exhibits a rare feature, viz., the polymerization of CL during the copolymerization in the presence of this initiator should proceed faster than the polymerization of LA, which leads to the preferential formation of the poly(CL-block-LA) block copolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. D. K. Schneiderman, M. A. Hillmyer, Macromolecules, 2017, 50, 3733; DOI: https://doi.org/10.1021/acs.macromol.7b00293.

    Article  CAS  Google Scholar 

  2. K. Yao, C. Tang, Macromolecules, 2013, 46, 1689; DOI: https://doi.org/10.1021/ma3019574.

    Article  CAS  Google Scholar 

  3. E. T. H. Vink, K. R. Rábago, D. A. Glassner, P. R. Gruber, Polym. Degrad. Stab., 2003, 80, 403; DOI: https://doi.org/10.1016/S0141-3910(02)00372-5.

    Article  CAS  Google Scholar 

  4. N. P. D. Dhanasekaran, K. S. Muthuvelu, S. K. Arumugasamy, in Encyclopedia of Materials: Plastics and Polymers, Ed. M. S. J. Hashmi, Elsevier, Oxford, 2022, p. 795; DOI: https://doi.org/10.1016/B978-0-12-820352-1.00217-0.

    Chapter  Google Scholar 

  5. O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev., 2004, 104, 6147; DOI: https://doi.org/10.1021/cr040002s.

    Article  CAS  PubMed  Google Scholar 

  6. K. Masutani, Y. Kimura, in Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications, Eds A. Jiménez, M. A. Peltzer, and R. Ruseckaite, The Royal Society of Chemistry, Cambridge, 2015, p. 3; DOI: https://doi.org/10.1039/9781782624806.

    Google Scholar 

  7. S. S. Panchal, D. V. Vasava, ACS Omega, 2020, 5, 4370; DOI: https://doi.org/10.1021/acsomega.9b04422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. N. Ajellal, J.-F. Carpentier, C. Guillaume, S. M. Guillaume, M. Helou, V. Poirier, Y. Sarazin, A. Trifonov, Dalton Trans., 2010, 39, 8363; DOI: https://doi.org/10.1039/C001226B.

    Article  CAS  PubMed  Google Scholar 

  9. A. P. Gupta, V. Kumar, Eur. Polym. J., 2007, 43, 4053; DOI: https://doi.org/10.1016/j.eurpolymj.2007.06.045.

    Article  CAS  Google Scholar 

  10. R. M. Rasal, A. V. Janorkar, D. E. Hirt, Prog. Polym. Sci., 2010, 35, 338; DOI: https://doi.org/10.1016/j.progpolymsci.2009.12.003.

    Article  CAS  Google Scholar 

  11. E. Stirling, Y. Champouret, M. Visseaux, Polym. Chem., 2018, 9, 2517; DOI: https://doi.org/10.1039/C8PY00310F.

    Article  CAS  Google Scholar 

  12. A. Arbaoui, C. Redshaw, Polym. Chem., 2010, 1, 801; DOI: https://doi.org/10.1039/B9PY00334G.

    Article  CAS  Google Scholar 

  13. N. Nomura, A. Akita, R. Ishii, M. Mizuno, J. Am. Chem. Soc., 2010, 132, 1750; DOI: https://doi.org/10.1021/ja9089395.

    Article  CAS  PubMed  Google Scholar 

  14. C. Kan, H. Ma, RSC Advances, 2016, 6, 47402; DOI: https://doi.org/10.1039/C6RA07374C.

    Article  CAS  Google Scholar 

  15. T. Shi, W. Luo, S. Liu, Z. Li, J. Polym. Sci., Part A: Polym. Chem., 2018, 56, 611; DOI: https://doi.org/10.1002/pola.28932.

    Article  CAS  Google Scholar 

  16. G. Li, M. Lamberti, D. Pappalardo, C. Pellecchia, Macromolecules, 2012, 45, 8614; DOI: https://doi.org/10.1021/ma3019848.

    Article  CAS  Google Scholar 

  17. M. Honrado, A. Otero, J. Fernández-Baeza, L. F. Sánchez-Barba, A. Garcés, A. Lara-Sánchez, A. M. Rodríguez, Organometallics, 2016, 35, 189; DOI: https://doi.org/10.1021/acs.organomet.5b00919.

    Article  CAS  Google Scholar 

  18. Y. Maruta, A. Abiko, Polym. Bull., 2014, 71, 989; DOI: https://doi.org/10.1007/s00289-014-1106-5.

    Article  CAS  Google Scholar 

  19. A. Harinath, J. Bhattacharjee, A. Sarkar, H. P. Nayek, T. K. Panda, Inorg. Chem., 2018, 57, 2503; DOI: https://doi.org/10.1021/acs.inorgchem.7b02847.

    Article  CAS  PubMed  Google Scholar 

  20. H. Ouyang, D. Yuan, K. Nie, Y. Zhang, Y. Yao, D. Cui, Inorg. Chem., 2018, 57, 9028; DOI: https://doi.org/10.1021/acs.inorgchem.8b01046.

    Article  CAS  PubMed  Google Scholar 

  21. I. Nifant’ev, P. Ivchenko, Molecules, 2019, 24, 4117; DOI: https://doi.org/10.3390/molecules24224117.

    Article  PubMed  PubMed Central  Google Scholar 

  22. I. Nifant’ev, P. Ivchenko, Polymers, 2019, 11, 2078; DOI: https://doi.org/10.3390/polym11122078.

    Article  PubMed  PubMed Central  Google Scholar 

  23. D. Chandanabodhi, T. Nanok, Mol. Catal., 2017, 436, 145; DOI: https://doi.org/10.1016/j.mcat.2017.04.005.

    Article  CAS  Google Scholar 

  24. C. Jehanno, L. Mezzasalma, H. Sardon, F. Ruipérez, O. Coulembier, D. Taton, Macromolecules, 2019, 52, 9238; DOI: https://doi.org/10.1021/acs.macromol.9b01853.

    Article  CAS  Google Scholar 

  25. I. Nifant’ev, A. Shlyakhtin, M. Kosarev, D. Gavrilov, S. Karchevsky, P. Ivchenko, Polymers, 2019, 11, 1641; DOI: https://doi.org/10.3390/polym11101641.

    Article  PubMed  PubMed Central  Google Scholar 

  26. I. Nifant’ev, P. Komarov, V. Ovchinnikova, A. Kiselev, M. Minyaev, P. Ivchenko, Polymers, 2020, 12, 2273; DOI: https://doi.org/10.3390/polym12102273.

    Article  PubMed  PubMed Central  Google Scholar 

  27. M. V. Zabalov, B. N. Mankaev, M. P. Egorov, S. S. Karlov, Int. J. Mol. Sci., 2022, 23, 15523; DOI: https://doi.org/10.3390/ijms232415523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. E. D. Cross, G. K. Tennekone, A. Decken, M. P. Shaver, Green Materials, 2013, 1, 79; DOI: https://doi.org/10.1680/gmat.12.00006.

    Article  Google Scholar 

  29. L. M. Alcazar-Roman, B. J. O’Keefe, M. A. Hillmyer, W. B. Tolman, Dalton Trans., 2003, 3082; DOI: https://doi.org/10.1039/B303760F.

  30. C.-T. Chen, C.-A. Huang, B.-H. Huang, Dalton Trans., 2003, 3799; DOI: https://doi.org/10.1039/B307365C.

  31. C.-T. Chen, C.-A. Huang, B.-H. Huang, Macromolecules, 2004, 37, 7968; DOI: https://doi.org/10.1021/ma0492014.

    Article  CAS  Google Scholar 

  32. K. Phomphrai, P. Chumsaeng, P. Sangtrirutnugul, P. Kongsaeree, M. Pohmakotr, Dalton Trans., 2010, 39, 1865; DOI: https://doi.org/10.1039/B919340E.

    Article  CAS  PubMed  Google Scholar 

  33. E. A. Kuchuk, K. V. Zaitsev, F. A. Mamedova, A. V. Churakov, G. S. Zaitseva, D. A. Lemenovsky, S. S. Karlov, Russ. Chem. Bull., 2016, 65, 1743; DOI: https://doi.org/10.1007/s11172-016-1505-x.

    Article  CAS  Google Scholar 

  34. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865; DOI: https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  PubMed  Google Scholar 

  35. M. Ernzerhof, G. E. Scuseria, J. Chem. Phys., 1999, 110, 5029; DOI: https://doi.org/10.1063/1.478401.

    Article  CAS  Google Scholar 

  36. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151; DOI: https://doi.org/10.1016/S0009-2614(97)01206-2.

    Article  CAS  Google Scholar 

  37. D. N. Laikov, Yu. A. Ustynyuk, Russ. Chem. Bull., 2005, 54, 820; DOI: https://doi.org/10.1007/s11172-005-0329-x.

    Article  CAS  Google Scholar 

  38. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104; DOI: https://doi.org/10.1063/1.3382344.

    Article  PubMed  Google Scholar 

  39. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem., 2011, 32, 1456; DOI: https://doi.org/10.1002/jcc.21759.

    Article  CAS  PubMed  Google Scholar 

  40. M. V. Zabalov, R. P. Tiger, Russ. Chem. Bull., 2016, 65, 631; DOI: https://doi.org/10.1007/s11172-016-1347-6.

    Article  CAS  Google Scholar 

  41. M. V. Zabalov, R. P. Tiger, Theor. Chem. Acc., 2017, 136, 95; DOI: https://doi.org/10.1007/s00214-017-2124-9.

    Article  Google Scholar 

  42. V. N. Emel’yanenko, S. P. Verevkin, A. A. Pimerzin, Russ. J. Phys. Chem., 2009, 83, 2013; DOI: https://doi.org/10.1134/S0036024409120024.

    Article  Google Scholar 

  43. V. N. Emel’yanenko, S. P. Verevkin, E. N. Stepurko, G. N. Roganov, M. K. Georgieva, Russ. J. Phys. Chem., 2010, 84, 356; DOI: https://doi.org/10.1134/S0036024410030039.

    Article  Google Scholar 

  44. I. d. S. Vieira, E. L. Whitelaw, M. D. Jones, S. Herres-Pawlis, Chem. Eur. J., 2013, 19, 4712; DOI: https://doi.org/10.1002/chem.201203973.

    Article  CAS  PubMed  Google Scholar 

  45. M.-C. Chang, W.-Y. Lu, H.-Y. Chang, Y.-C. Lai, M. Y. Chiang, H.-Y. Chen, H.-Y. Chen, Inorg. Chem., 2015, 54, 11292; DOI: https://doi.org/10.1021/acs.inorgchem.5b01858.

    Article  CAS  PubMed  Google Scholar 

  46. A. Walshe, J. Fang, L. Maron, R. J. Baker, Inorg. Chem., 2013, 52, 9077; DOI: https://doi.org/10.1021/ic401275e.

    Article  CAS  PubMed  Google Scholar 

  47. F. Della Monica, E. Luciano, G. Roviello, A. Grassi, S. Milione, C. Capacchione, Macromolecules, 2014, 47, 2830; DOI: https://doi.org/10.1021/ma5003358.

    Article  CAS  Google Scholar 

  48. J. Jitonnom, R. Molloy, W. Punyodom, W. Meelua, Comput. Theor. Chem., 2016, 1097, 25; DOI: https://doi.org/10.1016/j.comptc.2016.10.009.

    Article  CAS  Google Scholar 

  49. I. E. Nifant’ev, A. V. Shlyakhtin, V. V. Bagrov, M. E. Minyaev, A. V. Churakov, S. G. Karchevsky, K. P. Birin, P. V. Ivchenko, Dalton Trans., 2017, 46, 12132; DOI: https://doi.org/10.1039/C7DT02469J.

    Article  PubMed  Google Scholar 

  50. S. Gesslbauer, R. Savela, Y. Chen, A. J. P. White, C. Romain, ACS Catal., 2019, 9, 7912; DOI: https://doi.org/10.1021/acscatal.9b00875.

    Article  CAS  Google Scholar 

  51. A. Meduri, M. Mazzeo, M. Lamberti, C. Capacchione, S. Milione, Mol. Catal., 2019, 471, 54; DOI: https://doi.org/10.1016/j.mcat.2019.04.007.

    Article  Google Scholar 

  52. E. L. Marshall, V. C. Gibson, H. S. Rzepa, J. Am. Chem. Soc., 2005, 127, 6048; DOI: https://doi.org/10.1021/ja043819b.

    Article  CAS  PubMed  Google Scholar 

  53. N. Lawan, S. Muangpil, N. Kungwan, P. Meepowpan, V. S. Lee, W. Punyodom, Comput. Theor. Chem., 2013, 1020, 121; DOI: https://doi.org/10.1016/j.comptc.2013.07.045.

    Article  CAS  Google Scholar 

  54. L. Wang, C. E. Kefalidis, S. Sinbandhit, V. Dorcet, J.-F. Carpentier, L. Maron, Y. Sarazin, Chem. Eur. J., 2013, 19, 13463; DOI: https://doi.org/10.1002/chem.201301751.

    Article  CAS  PubMed  Google Scholar 

  55. S. Tabthong, T. Nanok, P. Sumrit, P. Kongsaeree, S. Prabpai, P. Chuawong, P. Hormnirun, Macromolecules, 2015, 48, 6846; DOI: https://doi.org/10.1021/acs.macromol.5b01381.

    Article  CAS  Google Scholar 

  56. J. Lewiński, P. Horeglad, K. Wójcik, I. Justyniak, Organometallics, 2005, 24, 4588; DOI: https://doi.org/10.1021/om050295v.

    Article  Google Scholar 

  57. I. E. Nifant’ev, A. V. Shlyakhtin, A. N. Tavtorkin, P. V. Ivchenko, R. S. Borisov, A. V. Churakov, Catal. Commun., 2016, 87, 106; DOI: https://doi.org/10.1016/j.catcom.2016.09.018.

    Article  Google Scholar 

  58. E. E. Marlier, J. A. Macaranas, D. J. Marell, C. R. Dunbar, M. A. Johnson, Y. DePorre, M. O. Miranda, B. D. Neisen, C. J. Cramer, M. A. Hillmyer, W. B. Tolman, ACS Catal., 2016, 6, 1215; DOI: https://doi.org/10.1021/acscatal.5b02607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. M. Mandal, A. M. Luke, B. Dereli, C. E. Elwell, T. M. Reineke, W. B. Tolman, C. J. Cramer, ACS Catal., 2019, 9, 885; DOI: https://doi.org/10.1021/acscatal.8b04540.

    Article  CAS  Google Scholar 

  60. K. Ding, M. O. Miranda, B. Moscato-Goodpaster, N. Ajellal, L. E. Breyfogle, E. D. Hermes, C. P. Schaller, S. E. Roe, C. J. Cramer, M. A. Hillmyer, W. B. Tolman, Macromolecules, 2012, 45, 5387; DOI: https://doi.org/10.1021/ma301130b.

    Article  CAS  Google Scholar 

  61. M. O. Miranda, Y. DePorre, H. Vazquez-Lima, M. A. Johnson, D. J. Marell, C. J. Cramer, W. B. Tolman, Inorg. Chem., 2013, 52, 13692; DOI: https://doi.org/10.1021/ic402255m.

    Article  CAS  PubMed  Google Scholar 

  62. C. Nakonkhet, T. Nanok, W. Wattanathana, P. Chuawong, P. Hormnirun, Dalton Trans., 2017, 46, 11013; DOI: https://doi.org/10.1039/C7DT02435E.

    Article  CAS  PubMed  Google Scholar 

  63. N. Nomura, R. Ishii, Y. Yamamoto, T. Kondo, Chem. Eur. J., 2007, 13, 4433; DOI: https://doi.org/10.1002/chem.200601308.

    Article  CAS  PubMed  Google Scholar 

  64. P. Li, Y. **, L. Li, H. Li, W.-H. Sun, M. Lei, Inorg. Chim. Acta, 2018, 477, 34; DOI: https://doi.org/10.1016/j.ica.2018.02.033.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Karlov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences I. P. Beletskaya on the occasion of her anniversary.

This work was financially supported by the Russian Science Foundation (Project No. 20-13-00391).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 3, pp. 602–616, March, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabalov, M.V., Mankaev, B.N., Egorov, M.P. et al. Copolymerization of l-lactide and ε-caprolactone using aluminum aminobisphenolate as an initiator: a quantum chemical study. Russ Chem Bull 72, 602–616 (2023). https://doi.org/10.1007/s11172-023-3824-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3824-6

Key words

Navigation