Log in

Structural and hydrodynamic characteristics of polystyrene synthesized in the presence of conjugated dinitrones

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A series of branched high-molecular-weight alkoxyamines (HAAs) based on polystyrene of different molecular weight were synthesized using nitroxide radicals generated in situ in the presence of conjugated dinitrones (N,N-dimethylglyoxaldinitrone, N,N-di-tert-butylgly-oxaldinitrone, and N,N-diphenylglyoxaldinitrone). Structural features of the products obtained were studied by MALDI-TOF mass spectrometry. Modification of the synthesized HAAs in the presence of azobisisobutyronitrile, carbon tetrabromide, dodecyl mercaptane, 4,5,5-trimethyl-2,2-diethyl-2,5-dihydroimidazole-1-oxyl, and 3,5-di-tert-butylbenzoquinone, as well as thermolysis of the HAAs in the presence of atmospheric oxygen showed that the nitroxide fragments are located within the polymer chain irrespective of the initial structure of the conjugated dinitrone. The molecular weight characteristics and conformational properties of the nitroxide-containing linear macromolecules and polymers were studied by static and dynamic light scattering and by viscometry. In most cases, the calculated values of the ρ-parameter (Rg/Rh) and the Zimm viscosity factor of the branched polystyrene samples synthesized using conjugated dinitrones are lower than those of linear analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. F. Grishin, I. D. Grishin, Russ. Chem. Rev. (Engl. Transl.), 2021, 90, 231; DOI: https://doi.org/10.1070/RCR4964.

    Article  CAS  Google Scholar 

  2. N. Corrigan, K. Jung, G. Moad, C. J. Hawker, K. Matyjaszewski, C. Boyer, Prog. Polym. Sci., 2020, 111, 101311; DOI: https://doi.org/10.1016/j.progpolymsci.2020.101311.

    Article  CAS  Google Scholar 

  3. Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies, Ed. K. Matyjaszewski, H. Gao, B. S. Sumerlin, N. V. Tsarevsky, American Chemical Society, Washington, 2018, 480 p.

    Google Scholar 

  4. O. S. Lizyakina, L. B. Vaganova, A. V. Piskunov, D. F. Grishin, Russ. Chem. Bull., 2020, 69, 1478; DOI: https://doi.org/10.1007/s11172-020-2926-0.

    Article  CAS  Google Scholar 

  5. D. F. Grishin, I. D. Grishin, in Polymeric Materials for Clean Water, Ed. R. Das, Springer, Switzerland, 2019, 7.

  6. A. Anastasaki, J. Willenbacher, C. Fleischmann, W. R. Gutekunst, C. J. Hawker, Po!ym. Chem., 2017, 8, 689; DOI: https://doi.org/10.1039/C6PY01993E.

    CAS  Google Scholar 

  7. A. I. Amirova, T. U. Kirila, A. N. Blokhin, A. B. Razina, A. E. Bursian, A. V. Tenkovtsev, A. P. Filippov, Mendeleev Commun., 2020, 30, 502; DOI: https://doi.org/10.1016/j.mencom.2020.07.033.

    Article  CAS  Google Scholar 

  8. P. A. Tikhonov, N. G. Vasilenko, G. V. Cherkaev, V. G. Vasil´ev, N. V. Demchenko, E. A. Tatarinova, A. M. Muzafarova, Mendeleev Commun., 2019, 29, 625; DOI: https://doi.org/10.1016/j.mencom.2019.11.006.

    Article  CAS  Google Scholar 

  9. Nitroxide Mediated Polymerization from Fundamentals to Applications in Materials Science, Ed. D. Gigmes, The Royal Society of Chemistry, UK, 2016, 500 p.

    Google Scholar 

  10. J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, B. Charleux, Prog. Polym. Sci., 2013, 38, 63; DOI: https://doi.org/10.1016/j.progpolymsci.2012.06.002.

    Article  CAS  Google Scholar 

  11. M. Edeleva, G. Audran, S. Marque, E. Bagryanskaya, Materials, 2019, 12, 688; DOI: https://doi.org/10.3390/ma12050688.

    Article  CAS  PubMed Central  Google Scholar 

  12. V. Sciannamea, R. Jérôme, C. Detrembleur, Chem. Rev., 2008, 108, 1104; DOI: https://doi.org/10.1021/cr0680540.

    Article  CAS  PubMed  Google Scholar 

  13. E. V. Kolyakina, D. F. Grishin, Russ. Chem. Rev., 2009, 78, 535; DOI: https://doi.org/10.1070/RC2009v078n06ABEH004026.

    Article  CAS  Google Scholar 

  14. D. F. Grishin, L. L. Semenycheva, E. V. Kolyakina, Dokl. AN, 1998, 362, 634 [Dokl. Chem. (Engl. Transl.), 1998, 362, 634].

    CAS  Google Scholar 

  15. E. V. Kolyakina, L. L. Semenycheva, D. F. Grishin, Vysokomolekulyar. soedineniya, Ser. A, 2001, 43, 2092 [Polym. Sci., Ser. A. (Engl. Transl.), 2001, 43, 1223].

    CAS  Google Scholar 

  16. M. Yu. Zaremski, A. P. Orlova, E. S. Garina, A. V. Olenin, M. B. Lachinov, V. B. Golubev, Vysokomolekulyar. soedineniya, er. A, 2003, 45, 871 [Polym. Sci., Ser. A (Engl. Transl.), 2003, 45, 502].

    Google Scholar 

  17. M. Yu. Zaremski, A. L. Reznichenko, Yu. V. Grinevich, E. S. Garina, M. B. Lachinov, V. B. Golubev, Vysokomolekulyar. soedineniya, Ser. A, 2005, 47, 898 [Polym. Sci., Ser. A (Engl. Transl.), 2005, 47, 536].

    CAS  Google Scholar 

  18. E. V. Kolyakina, A. B. Alyeva, D. F. Grishin, Applied Solid State Chemistry, 2018, 2, 29.

    Google Scholar 

  19. E. V. Kolyakina, A. B. Alyeva, E. V. Sazonova, A. A. Shchepalov, D. F. Grishin, Russ. Chem. Bull., 2019, 68, 1585; DOI: https://doi.org/10.1007/s11172-019-2597-x.

    Article  CAS  Google Scholar 

  20. E. V. Kolyakina, A. B. Alyeva, E. V. Sazonova, E. A. Zakharychev, D. F. Grishin, Vysokomolekulyar. soedineniya, Ser. B, 2020, 62, 253; DOI: https://doi.org/10.31857/S2308113920040075 [Polym. Sci., Ser. B (Engl. Transl.), 62, 328 DOI: https://doi.org/10.1134/S1560090420040077].

    Google Scholar 

  21. V. Sciannamea, C. Guerrero-Sanchez, U. S. Schuert, J. M. Catala, R. Jerome, C. Detrembleur, Polymer, 2005, 46, 9632; DOI: https://doi.org/10.1016/j.polymer.2005.07.074.

    Article  CAS  Google Scholar 

  22. V. Sciannamea, J. M. Catala, R. Jerome, C. Detrembleur, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 1219; DOI: https://doi.org/10.1002/pola.21889.

    Article  CAS  Google Scholar 

  23. E. H. H. Wong, T. Junkers, C. Barner-Kowollik, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 7273; DOI: https://doi.org/10.1002/pola.23025.

    Article  CAS  Google Scholar 

  24. T. Junkers, E. H. H. Wong, M. H. Stenzel, C. Barner-Kowollik, Macromolecules, 2009, 42, 5027; DOI: https://doi.org/10.1021/ma900356p.

    Article  CAS  Google Scholar 

  25. L. Barner, A. S. Quick, A. P. Vogt, V. Winkler, T. Junkers, C. Barner-Kowollik, Polym. Chem., 2012, 3, 2266; DOI: https://doi.org/10.1039/C2PY20272G.

    Article  CAS  Google Scholar 

  26. G. Wang, J. Huang, Polym. Chem., 2014, 5, 277; DOI: https://doi.org/10.1039/C3PY00872J.

    Article  CAS  Google Scholar 

  27. E. H. H. Wong, O. Altintas, M. H. Stenzel, C. Barner-Kowollik, T. Junkers, Chem. Commun., 2011, 47, 5491; DOI: https://doi.org/10.1039/C1CC10322A.

    Article  CAS  Google Scholar 

  28. S. C. Radzinski, E. S. Tillman, Polymer, 2011, 52, 6003; DOI: https://doi.org/10.1016/j.polymer.2011.10.053

    Article  CAS  Google Scholar 

  29. K. **a, A. J. Rubaie, B. P. Johnson, S. A. Parker, E. S. Tillman, J. Polym. Sci., PartA: Polym. Chem., 2019, 57, 2113; DOI: https://doi.org/10.1002/pola.29482.

    Article  CAS  Google Scholar 

  30. C. Detrembleur, A. Debuigne, O. Altintas, M. Conradi, E. H. H. Wong, C. Jerome, C. Barner-Kowollik, T. Junkers, Polym. Chem., 2012, 3, 135; DOI: https://doi.org/10.1039/C1PY00297J.

    Article  CAS  Google Scholar 

  31. C. S. Blackburn, K. D. Myers, E. S. Tillman, Polymer, 2015, 68, 284; DOI: https://doi.org/10.1016/j.polymer.2015.05.021.

    Article  CAS  Google Scholar 

  32. B. D. McFadden, M. M. Arce, E. M. Carnicom, J. Herman, J. Abruzzese, E. S. Tillman, Macromol. Chem. Phys., 2016, 217, 2473; DOI: https://doi.org/10.1002/macp.201600317.

    Article  CAS  Google Scholar 

  33. M. Du, C. Deng, X. Wu, H. Liu, H. Liu, Macromol. Chem. Phys., 2017, 218, DOI: https://doi.org/10.1002/macp.201700069.

  34. E. V. Kolyakina, F. Kh. Shoipova, A. B. Alyeva, D. F. Grishin, Russ. Chem. Bull., 2021, 70, 1736.

    Article  Google Scholar 

  35. E. H. H. Wong, T. Junkers, C. Barner-Kowollik, Polym. Chem., 2011, 2, 1008; DOI: https://doi.org/10.1039/C0PY00377H.

    Article  CAS  Google Scholar 

  36. A. B. Cook, S. Perrier, Adv. Funct. Mater., 2020, 30, 1901001; DOI: https://doi.org/10.1002/adfm.201901001.

    Article  CAS  Google Scholar 

  37. W. Wua, W. Wanga, J. Li, Progress in Polymer Science, 2015, 46, 55; DOI: https://doi.org/10.1016/j.progpolymsci.2015.02.002.

    Article  CAS  Google Scholar 

  38. D. Rehorek, E. G. Janzen, J. Praktische Chemie, 1985, 327, 968; DOI: https://doi.org/10.1002/prac.19853270615.

    Article  CAS  Google Scholar 

  39. V. Lotocki, K. Ashok, Pharmaceutics, 2020, 12, 827; DOI: https://doi.org/10.3390/pharmaceutics12090827.

    Article  CAS  PubMed Central  Google Scholar 

  40. N. Fuhrman, R. B. Mesrobian, J. Am. Chem. Soc., 1954, 76, 3281; DOI: https://doi.org/10.1021/ja01641a061.

    Article  CAS  Google Scholar 

  41. F. R. Mayo, J. Am. Chem. Soc., 1968, 90, 1289. DOI: https://doi.org/10.1021/ja01007a032.

    Article  CAS  Google Scholar 

  42. P. Outer, C. I. Carr, B. H. Zimm, J. Chem. Phys., 1950. 18, 830; DOI: https://doi.org/10.1063/1.1747783.

    Article  CAS  Google Scholar 

  43. A. P. Filippov, O. G. Zamyshlyayeva, E. B. Tarabukina, M. A. Simonova, A. V. Kozlov, Yu. D. Semchikov, Vysokomolekulyar. soedineniya, Ser. A, 54, 675 [Polym. Sci., Ser. A (Engl. Transl.), 2012, 54; DOI: https://doi.org/10.1134/S0965545X12050033].

  44. W. Burchard, Adv. Polymer Sci., 2005, 143, 113; DOI: https://doi.org/10.1007/b136243.

    Article  Google Scholar 

  45. W. Huang, W. Gu, H. Yang, X. Xue, B. Jiang, D. Zhang, J. Fang, J. Chen, Y. Yang, J. Guo, Polymers, 2017, 9, DOI: https://doi.org/10.3390/polym9010014.

  46. T. A. Orofino, Polymer, 1961, 2, 305; DOI: https://doi.org/10.1016/0032-3861(61)90033-7.

    Article  CAS  Google Scholar 

  47. P. G. de Gennes, Macromol., 1980, 13, 1069; DOI: https://doi.org/10.1021/ma60077a009.

    Article  CAS  Google Scholar 

  48. N. V. Kutsevol, T. N. Bezuglaya, M. Y. Bezuglyi, Russ. J. Struct. Chem., 2014, 55, 548; DOI: https://doi.org/10.1134/S002247661403024X.

    Article  CAS  Google Scholar 

  49. Entsiklopediya polimerov [Polymer Encyclopedia], Ed. V. A. Kabanov, Moscow, Sovetskaya Entsiklopediya, 1972, vol. 1 (in Russian).

    Google Scholar 

  50. Organic Syntheses, New York—London, Interscience Publishers, 1946–1952, V. 2632.

  51. A. Weissberger, E. Proskauer, J. Riddick, E. Toops, Organic Solvents, Interscience Publishers, New York, 1955.

    Google Scholar 

  52. I. Raspertova, O. Osetska, K. Gubina, R. Lampeka, Polyhedron, 2011, 30, 2320; DOI: https://doi.org/10.1016/j.poly.2011.06.015.

    Article  CAS  Google Scholar 

  53. B. G. Belen´kiy, L. Z. Vilenchik, Khromatografiya polimerov [Chromatography of Polymers], Khimiya, Moscow, 1978, 344 pp. (in Russian).

    Google Scholar 

  54. V. E. Eskin, Rasseyanie sveta rastvorami polimerov [Light Scattering by Solutions of Polymers], Nauka, Leningrad, 1986, 286 pp. (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Grishin.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1997–2013, October, 2021.

The authors express their gratitude to I. D. Grishin for carrying out MALDI-TOF mass spectrometric analysis.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 20-03-00150).

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolyakina, E.V., Alyeva, A.B., Zakharychev, E.A. et al. Structural and hydrodynamic characteristics of polystyrene synthesized in the presence of conjugated dinitrones. Russ Chem Bull 70, 1997–2013 (2021). https://doi.org/10.1007/s11172-021-3308-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3308-y

Key words

Navigation