Log in

Synthesis and photoinitiating ability of substituted 4,5-di-tert-alkyl-o-benzoquinones in radical polymerization

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

New tri- and tetraalkyl-substituted o-benzoquinones were synthesized based on 5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalene-2,3-diol derivatives. The new compounds were characterized by spectroscopic and electrochemical methods. The reactivity of o-benzoquinones was evaluated in the photoreduction and initiation of photopolymerization of oligocarbonate dimethacrylate (OCM-2) in the presence of N,N-dimethylcyclohexylamine and in the inhibition of MMA polymerization. The introduction of the methyl substituent into the benzene ring has a weak effect on the inhibitory activity of o-benzoquinone, whereas the (3,5-dimethylpyrazol-1-yl)methyl substituent enhances the inhibitory effect of 4,5-di-tert-alkyl-substituted o-benzoquinone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Waldvogel, S. Lips, M. Selt, B. Riehl, C. J. Kampf, Chem. Rev., 2018, 118, 6706; DOI: https://doi.org/10.1021/acs.chemrev.8b00233.

    Article  CAS  PubMed  Google Scholar 

  2. X. Guo, H. Mayr, J. Am. Chem. Soc., 2014, 136, 11499; DOI: https://doi.org/10.1021/ja505613b.

    Article  CAS  PubMed  Google Scholar 

  3. J. Mancebo-Aracil, C. Casagualda, M. Á. Moreno-Villaécija, F. Nador, J. García-Pardo, A. Franconetti-García, F. Busqué, R. Alibés, M. J. Esplandiu, D. Ruiz-Molina, J. Sedó-Vegara, Chem. Eur. J., 2019, 25, 12367; DOI: https://doi.org/10.1002/chem.201901914.

    Article  CAS  PubMed  Google Scholar 

  4. S. Radhika, S. Saranya, N. A. Harry, G. Anilkumar, Chemistry Select, 2019, 4, 9124; DOI: https://doi.org/10.1002/slct.201902637.

    CAS  Google Scholar 

  5. T. Kaicharla, S. S. Bhojgude, A. T. Biju, Org. Lett., 2012, 14, 6238; DOI: https://doi.org/10.1021/ol302997q.

    Article  CAS  PubMed  Google Scholar 

  6. J. N. Hamann, M. Rolff, F. Tuczek, Dalton Trans., 2015, 44, 3251; DOI: https://doi.org/10.1039/C4DT03010A.

    Article  CAS  PubMed  Google Scholar 

  7. D. Vasu, A. L. Fuentes de Arriba, J. A. Leitch, A. de Gombert, D. J. Dixon, Chem. Sci., 2019, 10, 3401; DOI: https://doi.org/10.1039/C8SC05164J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. Baschieri, R. Amorati, L. Valgimigli, L. Sambri, J. Org. Chem., 2019, 84, 13655; DOI: https://doi.org/10.1021/acs.joc.9b01898.

    Article  CAS  PubMed  Google Scholar 

  9. D. A. Burmistrova, I. V. Smolyaninov, N. T. Berberova, Russ. Chem. Bull., 2020, 69, 990; DOI: https://doi.org/10.1007/s11172-020-2860-1.

    Article  CAS  Google Scholar 

  10. H.-J. Rong, Y.-F. Cheng, F.-F. Liu, S.-J. Ren, J. Qu, J. Org. Chem., 2017, 82, 532; DOI: https://doi.org/10.1021/acs.joc.6b02562.

    Article  CAS  PubMed  Google Scholar 

  11. H.-J. Rong, J.-J. Yao, J.-K. Li, J. Qu, J. Org. Chem., 2017, 82, 5557; DOI: https://doi.org/10.1021/acs.joc.7b00361.

    Article  CAS  PubMed  Google Scholar 

  12. C. Mohapatra, L. T. Scharf, T. Scherpf, B. Mallick, K.-S. Feichtner, C. Schwarz, V. H. Gessner, Angew. Chem. Int. Ed., 2019, 58, 7459; DOI: https://doi.org/10.1002/anie.201902831.

    Article  CAS  Google Scholar 

  13. R. Azhakar, R. S. Ghadwal, H. W. Roesky, J. Hey, D. Stalke, Organometallics, 2011, 30, 3853; DOI: https://doi.org/10.1021/om200388a.

    Article  CAS  Google Scholar 

  14. A. M. Christianson, E. Rivard, F. P. Gabbai, Organometallics, 2017, 36, 2670; DOI: https://doi.org/10.1021/acs.organomet.7b00289.

    Article  CAS  Google Scholar 

  15. B. M. Bizzarri, A. Martini, F. Serafini, D. Aversa, D. Piccinino, L. Botta, N. Berretta, E. Guatteo, R. Saladino, RSC Advances, 2017, 7, 20502; DOI: https://doi.org/10.1039/C7RA03326E.

    Article  CAS  Google Scholar 

  16. B. M. Bizzarri, L. Botta, D. Aversa, N. B. Mercuri, G. Poli, A. Barbieri, N. Berretta, R. Saladino, ACS Med. Chem. Lett., 2019, 10, 431; DOI: https://doi.org/10.1021/acsmedchemlett.8b00477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. I. V. Smolyaninov, O. V. Pitikova, E. O. Korchagina, A. I. Poddel’sky, G. K. Fukin, S. A. Luzhnova, A. M. Tichkomirov, E. N. Ponomareva, N. T. Berberova, Bioorg. Chem., 2019, 89, 103003; DOI: https://doi.org/10.1016/j.bioorg.2019.103003.

    Article  CAS  PubMed  Google Scholar 

  18. V. K. Cherkasov, N. O. Druzhkov, A. A. Zolotukhin, A. S. Shavyrin, E. N. Egorova, Russ. Chem. Bull., 2015, 64, 2718; DOI: https://doi.org/10.1007/s11172-015-1213-y.

    Article  CAS  Google Scholar 

  19. A. N. Kravchenko, S. V. Vasilevskii, G. A. Gazieva, V. V. Baranov, V. A. Barachevsky, O. I. Kobeleva, O. V. Venidiktova, V. A. Karnoukhova, Tetrahedron, 2018, 74, 2359; DOI: https://doi.org/10.1016/j.tet.2018.03.056.

    Article  CAS  Google Scholar 

  20. N. O. Chalkov, V. K. Cherkasov, G. A. Abakumov, G. V. Romanenko, S. Y. Ketkov, I. V. Smolyaninov, A. G. Starikov, V. A. Kuropatov, Eur. J. Org. Chem., 2014, 2014, 4571; DOI: https://doi.org/10.1002/ejoc.201402367.

    Article  CAS  Google Scholar 

  21. M. V. Arsenyev, E. A. Chelnokov, E. V. Baranov, S. A. Chesnokov, Crystallogr. Repts., 2020, 65, 253; DOI: https://doi.org/10.1134/S1063774520020030.

    Article  CAS  Google Scholar 

  22. I. V. Smolyaninov, O. V. Pitikova, A. I. Poddel’sky, N. T. Berberova, Russ. Chem. Bull., 2018, 67, 1857; DOI: https://doi.org/10.1007/s11172-018-2299-9.

    Article  CAS  Google Scholar 

  23. M. P. Bubnov, A. V. Piskunov, A. A. Zolotukhin, I. N. Meshchryakova, N. A. Skorodumova, A. S. Bogomyakov, E. V. Baranov, G. K. Fukin, V. K. Cherkasov, Russ. J. Coord. Chem., 2020, 46, 224; DOI: https://doi.org/10.1134/S107032842003001X.

    Article  CAS  Google Scholar 

  24. D. L. J. Broere, R. Plessius, J. I. van der Vlugt, Chem. Soc. Rev., 2015, 44, 6886; DOI: https://doi.org/10.1039/C5CS00161G.

    Article  CAS  PubMed  Google Scholar 

  25. C. G. Pierpont, Inorg. Chem., 2011, 50, 9766; DOI: https://doi.org/10.1021/ic201237d.

    Article  CAS  PubMed  Google Scholar 

  26. A. A. Starikova, V. I. Minkin, Russ. Chem. Rev., 2018, 87, 1049; DOI: https://doi.org/10.1070/RCR4837.

    Article  CAS  Google Scholar 

  27. S. N. Mensov, G. A. Abakumov, M. V. Arsenyev, M. A. Baten’kin, S. A. Chesnokov, A. N. Konev, Y. V. Polushtaytsev, M. P. Shurygina, M. Yu. Zakharina, J. Appl. Polym. Sci., 2020, 48976; DOI: https://doi.org/10.1002/app.48976.

  28. S. A. Chesnokov, V. K. Cherkasov, G. A. Abakumov, O. N. Mamysheva, M. Y. Zakharina, N. Y. Shushunova, Y. V. Chechet, V. A. Kuropatov, Polym. Sci., Ser. B, 2014, 56, 11; DOI: https://doi.org/10.1134/s1560090414010011.

    Article  CAS  Google Scholar 

  29. M. P. Shurygina, M. Y. Zakharina, M. A. Baten’kin, A. N. Konev, A. S. Shavyrin, E. A. Chelnokov, N. Y. Shushunova, M. V. Arsenyev, S. A. Chesnokov, G. A. Abakumov, Eur. Polym. J., 2020, 127, 109573; DOI: https://doi.org/10.1016/j.eurpolymj.2020.109573.

    Article  CAS  Google Scholar 

  30. G. A. Miller, L. Gou, V. Narayanan, A. B. Scranton, J. Polym. Sci., Part A: Polym. Chem., 2002, 40, 793; DOI: https://doi.org/10.1002/pola.10162.

    Article  CAS  Google Scholar 

  31. H. Fu, Y. Qiu, J. You, T. Hao, B. Fan, J. Nie, T. Wang, Polymer, 2019, 184, 121841; DOI: https://doi.org/10.1016/j.polymer.2019.121841.

    Article  CAS  Google Scholar 

  32. V. A. Garnov, V. I. Nevodchikov, L. G. Abakumova, G. A. Abakumov, V. K. Cherkasov, Russ. Chem. Bull., 1987, 36, 1728; DOI: https://doi.org/10.1007/bf00960144.

    Article  Google Scholar 

  33. M. A. Zherebtsov, M. V. Arsenyev, S. A. Chesnokov, V. K. Cherkasov, Russ. J. Org. Chem., 2020, 56, 534; DOI: https://doi.org/10.1134/S1070428020030264.

    Article  CAS  Google Scholar 

  34. M. V. Arsenyev, E. V. Baranov, A. Y. Fedorov, S. A. Chesnokov, G. A. Abakumov, Mendeleev Commun., 2015, 25, 312; DOI: https://doi.org/10.1016/j.mencom.2015.07.029.

    Article  CAS  Google Scholar 

  35. M. V. Arsenyev, E. V. Baranov, M. P. Shurygina, S. A. Chesnokov, G. A. Abakumov, Mendeleev Commun., 2016, 26, 552; DOI: https://doi.org/10.1016/j.mencom.2016.11.032.

    Article  CAS  Google Scholar 

  36. A. I. Poddel’sky, M. V. Arsenyev, T. V. Astaf’eva, S. A. Chesnokov, G. K. Fukin, G. A. Abakumov, J. Organomet. Chem., 2017, 835, 17; DOI: https://doi.org/10.1016/j.jorganchem.2017.02.035.

    Article  CAS  Google Scholar 

  37. E. R. Zhiganshina, M. V. Arsenyev, A. S. Shavyrin, E. V. Baranov, S. A. Chesnokov, Mendeleev Commun., 2019, 29, 91; DOI: https://doi.org/10.1016/j.mencom.2019.01.031.

    Article  CAS  Google Scholar 

  38. C. Grieco, A. T. Hanes, L. Blancafort, B. Kohler, J. Phys. Chem. A, 2019, 123, 5356; DOI: https://doi.org/10.1021/acs.jpca.9b04573.

    Article  CAS  PubMed  Google Scholar 

  39. Y. A. Sayapin, I. O. Tupaeva, V. V. Tkachev, G. V. Shilov, Russ. J. Org. Chem., 2016, 52, 214; DOI: https://doi.org/10.1134/S1070428016020093.

    Article  CAS  Google Scholar 

  40. M. V. Arsenyev, E. V. Baranov, S. A. Chesnokov, G. A. Abakumov, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2013, 69, 1565; DOI: https://doi.org/10.1107/S1600536813025488.

    Article  CAS  Google Scholar 

  41. R. I. Bochkova, Yu. N. Saf’yanov, L. N. Zakharov, V. A. Garnov, Kristallografiya [Crystallogr. Repts], 1989, 34, 752 (in Russian).

    CAS  Google Scholar 

  42. K. Baumgärtner, F. Rominger, M. Mastalerz, J. Org. Chem., 2015, 80, 8881; DOI: https://doi.org/10.1021/acs.joc.5b01426.

    Article  PubMed  CAS  Google Scholar 

  43. J.-M. Zhao, H.-Y. Lu, J. Cao, Y. Jiang, C.-F. Chen, Tetrahedron Lett., 2009, 50, 219; DOI: https://doi.org/10.1016/j.tetlet.2008.10.128.

    Article  CAS  Google Scholar 

  44. V. K. Cherkasov, G. A. Abakumov, A. S. Shavyrin, V. V. Kuz’michev, E. V. Baranov, I. V. Smolyaninov, V. A. Kuropatov, Asian J. Org. Chem., 2015, 4, 446; DOI: https://doi.org/10.1002/ajoc.201500005.

    Article  CAS  Google Scholar 

  45. A. Rene, D. H. Evans, J. Phys. Chem. C, 2012, 116, 14454; DOI: https://doi.org/10.1021/jp3038335.

    Article  CAS  Google Scholar 

  46. I. V. Smolyaninov, V. V. Kuzmin, M. V. Arsenyev, S. A. Smolyaninova, A. I. Poddel’sky, N. T. Berberova, Russ. Chem. Bull., 2017, 66, 1217; DOI: https://doi.org/10.1007/s11172-017-1876-7.

    Article  CAS  Google Scholar 

  47. S. Berger, P. Hertl, A. Rieker, in The Quinonoid Compounds, 1988, p. 29–78.

  48. G. A. Abakumov, S. A. Chesnokov, V. K. Cherkasov, G. A. Razuvaev, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1985, 34, 700; DOI: https://doi.org/10.1007/BF00948039.

    Article  Google Scholar 

  49. M. P. Shurygina, Y. A. Kurskii, N. O. Druzhkov, S. A. Chesnokov, G. A. Abakumov, High Energ. Chem., 2010, 44, 234; DOI: https://doi.org/10.1134/s0018143910030148.

    Article  CAS  Google Scholar 

  50. O. Hammerich, H. Lund, Organic Electrochemistry, CRC Press, 2000.

  51. S. A. Chesnokov, V. K. Cherkasov, G. A. Abakumov, O. N. Mamysheva, Y. V. Chechet, V. I. Nevodchikov, Russ. Chem. Bull., 2001, 50, 2366; DOI: https://doi.org/10.1023/a:1015079328446.

    Article  CAS  Google Scholar 

  52. Yu. L. Kuznetsova, P. G. Mozaleva, A. S. Vavilova, E. A. Kalinina, Russ. Chem. Bull., 2020, 69, 763; DOI: https://doi.org/10.1007/s11172-020-2830-7.

    Article  CAS  Google Scholar 

  53. W. L. F. Armarego, C. L. L. Chai, Purification Laboratory Chemicals, Elsevier, Butterworth-Heinemann, Amsterdam, 2003.

    Google Scholar 

  54. Bruker SAINT Data Reduction and Correction Program, 2017, V. 8.38A, Bruker AXS, Madison, Wisconsin, USA.

  55. Data Collection, Reduction and Correction Program, CrysAlisPro 1.171.38.46 — Software Package, Rigaku OD 2015.

  56. G. M. Sheldrick, SHELXTL. Version 6.14. Structure Determination Software Suite, Madison (WI, USA): Bruker AXS, 2003.

    Google Scholar 

  57. G. M. Sheldrick, SADABS v. 2016/2, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA, 2016.

    Google Scholar 

  58. SCALE3 ABSPACK: Empirical absorption correction, CrysAlisPro 1.171.38.46 — Software Package, Rigaku OD, 2015.

  59. S. A. Chesnokov, M. Y. Zakharina, A. S. Shaplov, E. I. Lozinskaya, I. A. Malyshkina, G. A. Abakumov, F. Vidal, Y. S. Vygodskii, J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 2388; DOI: https://doi.org/10.1002/pola.24008.

    Article  CAS  Google Scholar 

  60. E. Andrzejewska, L. A. Lindén, J. F. Rabek, Macromol. Chem. Phys., 1998, 199, 441; DOI: https://doi.org/10.1002/(SICI)1521-3935(19980301)199:3<441::AID-MACP441>3.0.CO;2-N.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Arsenyev.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 780–791, April, 2021.

This study was financially supported by the Council on Grants at the President of the Russian Federation (Program of the state support of young Russian scientists, Grant MK-2351.2019.3) using equipment of the Analytical Center of the G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences (Nizhny Novgorod).

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zherebtsov, M.A., Zhiganshina, E.R., Lenshina, N.A. et al. Synthesis and photoinitiating ability of substituted 4,5-di-tert-alkyl-o-benzoquinones in radical polymerization. Russ Chem Bull 70, 780–791 (2021). https://doi.org/10.1007/s11172-021-3151-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3151-1

Key words

Navigation