Log in

Cobalt copper ferrite: burning rate modifier for composite solid propellants and its catalytic activity on the thermal decomposition of ammonium perchlorate

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nanosize cobalt copper ferrite (CoCuF) was successfully synthesized by the co-precipitation method and used as an additive (1% by weight) to enhance the thermal decomposition of ammonium perchlorate (AP). The optical and spectroscopic properties of the synthesized CoCuF were determined using XRD, atomic force microscopy (AFM), surface area analysis, Raman spectroscopy, and UV–VIS spectroscopy. The thermal decomposition temperature of AP is lowered by 75.8 °C in the presence of the additive. DSC kinetics study also imparted that the activation energy was reduced to a great extent AP in the presence of CoCuF as an additive. CoCuF also increased the burning rate of CSPs by 0.78 mm/s at atmospheric pressure. Activation energy calculations using Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), Starink, Friedman, iterative Flynn–Wall–Ozawa (it-FWO), and iterative Kissinger–Akahira–Sunose (it-KAS) confirm the great catalytic activity of CoCuF.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.L. Varghese, V.N. Krishnamurthy, The Chemistry and Technology of Solid Rocket Propellants (A Treatise on Solid Propellants) (Allied Publishers, Mumbai, 2017), pp. 1–19

    Google Scholar 

  2. D.M. Badgujar, M.B. Talawar, S.N. Asthana, P.P. Mahulikar, J Hazard Mater. 151, 289 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. N. Yadav, P.K. Srivastava, M. Varma, Def. Technol. 17, 1013 (2021)

    Article  Google Scholar 

  4. R. Kumar, P.F. Siril, P. Soni, Def. Technol. 11, 382 (2015)

    Article  Google Scholar 

  5. S. Chaturvedi, P.N. Dave, J. Saudi Chem. Soc. 17, 135 (2013)

    Article  CAS  Google Scholar 

  6. N.M. Juibari, A. Eslami, J. Therm. Anal. Calorim. 128, 115 (2017)

    Article  CAS  Google Scholar 

  7. V. Bagalkote, D. Grinstein, B. Natan, Propellants Explos. Pyrotech. 42, 1 (2018)

    Google Scholar 

  8. S. Isert, L. **n, J. **e, S.F. Son, Combust. Flame 183, 322 (2017)

    Article  CAS  Google Scholar 

  9. Y. Liu, Y. Cheng, S. Lv, C. Liu, J. Lai, G. Luo, Res. Chem. Intermed. 41, 3885 (2015)

    Article  CAS  Google Scholar 

  10. T. Chen, Y. Hu, C. Zhang, Z. Gao, Def. Technol. 17, 1471 (2021)

    Article  Google Scholar 

  11. A. Kumari, Mehilal, S. Jain, M.K. Jain, B. Bhattacharya, J. Energy Mater. 31, 192 (2013)

  12. B. Gao, Z. Qiao, G. Yang, in Nanomaterials in Rocket Propulsion Systems. ed. by Q.-L. Yan, G.-Q. He, P.-J. Liu, M. Gozin (Elsevier, Amsterdam, 2019), p. 31

    Chapter  Google Scholar 

  13. S. Chaturvedi, P.N. Dave, N.K. Shah, J. Saudi Chem. Soc. 16, 307 (2012)

    Article  CAS  Google Scholar 

  14. P. Chandrababu, J. Thankarajan, V. Sukumaran Nair, R. Raghavan, Thermochim. Acta. 691, 178720 (2020)

    Article  CAS  Google Scholar 

  15. S.G. Hosseini, S. Gholami, M. Mahyari, Res. Chem. Intermed. 45, 1527 (2019)

    Article  CAS  Google Scholar 

  16. S. Chaturvedi, P.N. Dave, J. Exp. Nanosci. 7, 205 (2012)

    Article  CAS  Google Scholar 

  17. J.A. Vara, P.N. Dave, S. Chaturvedi, Def. Technol. 15, 629 (2019)

    Article  Google Scholar 

  18. J.A. Vara, P.N. Dave, S. Chaturvedi, Combust. Sci. Technol. 193, 2290 (2021)

    Article  CAS  Google Scholar 

  19. J.A. Vara, P.N. Dave, V.R. Ram, Nano-Struct. Nano-Obj. 20, 100372 (2019)

    Article  CAS  Google Scholar 

  20. Y. Wang, T. An, N. Yan, Z. Yan, B. Zhao, F. Zhao, ACS Omega 5, 327 (2020)

    Article  CAS  PubMed  Google Scholar 

  21. L.-K. Wu, H. Wu, H.-B. Zhang, H.-Z. Cao, G.-Y. Hou, Y.-P. Tang, G.-Q. Zheng, Chem. Eng. J. 334, 1808 (2018)

    Article  CAS  Google Scholar 

  22. X. Zheng, P. Li, S. Zheng, Y. Zhang, Powder Technol. 268, 446 (2014)

    Article  CAS  Google Scholar 

  23. Z. Zheng, W. Zhang, L. Chen, W. **ong, G. Zeng, J. Liu, R. Wu, J. Wang, J. Ye, J. Zhu, Appl. Surf. Sci. 483, 496 (2019)

    Article  CAS  Google Scholar 

  24. M. Chawla, R. Dubey, G. Singh, S.K. Sengupta, P.F. Siril, Thermochim. Acta. 654, 130 (2017)

    Article  CAS  Google Scholar 

  25. R. Dubey, P. Srivastava, I.P.S. Kapoor, G. Singh, Thermochim. Acta. 549, 102 (2012)

    Article  CAS  Google Scholar 

  26. M. Song, M. Chen, Z. Zhang, Propellants Explos. Pyrotech. 33, 261 (2008)

    Article  CAS  Google Scholar 

  27. G. Hao, X. Zhou, X. Liu, B. Gou, Y. Hu, L. **ao, J. Liu, W. Jiang, F. Zhao, H. Gao, J. Energy Mater. 37, 484 (2019)

    Article  CAS  Google Scholar 

  28. X. Ke, X. Zhou, G. Hao, L. **ao, H. Gao, T. Chen, W. Jiang, Funct. Mater. Lett. 10, 1750030 (2017)

    CAS  Google Scholar 

  29. I. Othman, M. Abu-Haija, I. Ismail, J.H. Zain, F. Banat, Mater. Chem. Phys. 238, 121931 (2019)

    Article  CAS  Google Scholar 

  30. S.G. Hosseini, R. Abazari, RSC Adv. 5, 96777 (2015)

    Article  CAS  Google Scholar 

  31. D.C.K. Rao, N. Yadav, P.C. Joshi, Def. Technol. 12, 297 (2016)

    Article  Google Scholar 

  32. P.N. Dave, P.N. Ram, S. Chaturvedi, Part. Sci. Technol. 33, 677 (2015)

    Article  CAS  Google Scholar 

  33. A. Samavati, A.F. Ismail, Particuology 30, 158 (2017)

    Article  CAS  Google Scholar 

  34. A.S. Budhwar, A. Gautam, P.V. More, C.S. Pant, S. Banerjee, P.K. Khanna, Vacuum 156, 483 (2018)

    Article  CAS  Google Scholar 

  35. T.M. Hammad, J.K. Salem, A.A. Amsha, N.K. Hejazy, J. Alloys Compd. 741, 123 (2018)

    Article  CAS  Google Scholar 

  36. M. Bagherzadeh, R. Kaveh, S. Ozkar, S. Akbayrak, Res. Chem. Intermed. 44, 5953 (2018)

    Article  CAS  Google Scholar 

  37. M. Zheng, Z. Wang, J. Wu, Q. Wang, J. Nanopart. Res. 12, 2211 (2010)

    Article  CAS  Google Scholar 

  38. S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Springer, Amsterdam, 2012), p. 58

    Google Scholar 

  39. J.B. Silva, W. de Brito, N.D.S. Mohallem, Mater. Sci. Eng. B 112, 182 (2004)

    Article  Google Scholar 

  40. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, in Handbook of Heterogeneous Catalysis. ed. by G. Erti, H. Knözinger, F. Schüth, J. Weitkamp (Wiley Online Library, Weinheim, 2008), p. 1217

    Google Scholar 

  41. M. Naderi, in Progress in Filtration and Separation. ed. by S. Tarleton (Academic Press, Oxford, 2015), p. 585

    Chapter  Google Scholar 

  42. J.R. Ferraro, K. Nakamoto, Introductory Raman Spectroscopy (Academic Press, London, 2012), pp. 1–94

    Google Scholar 

  43. B. Nandan, M.C. Bhatnagar, S.C. Kashyap, J. Phys. Chem. Solids 129, 298 (2019)

    Article  CAS  Google Scholar 

  44. L. Kang, S. Li, B. Wang, X. Li, Q. Zeng, J. Phys. Chem. C 122, 15937 (2018)

    Article  CAS  Google Scholar 

  45. S. Elbasuney, M. Gobara, M.G. Zaky, M. Radwan, A. Maraden, S. Ismael, E. Elsaka, M. Abd Elkodous, G.S. El-Sayyad, J. Mater. Sci. Mater. Electron. 31, 8212 (2020)

    Article  CAS  Google Scholar 

  46. I. Chorkendorff, J.W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics (Wiley Online Library, Weinheim, 2006), pp. 1–22

    Google Scholar 

  47. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 520, 1 (2011)

    Article  CAS  Google Scholar 

  48. D. Trache, F. Maggi, I. Palmucci, L.T. DeLuca, J. Therm. Anal. Calorim. 132, 1601 (2018)

    Article  CAS  Google Scholar 

  49. M.J. Starink, Thermochim. Acta 404, 163 (2003)

    Article  CAS  Google Scholar 

  50. Z. Chen, Q. Chai, S. Liao, X. Chen, Y. He, Y. Li, W. Wu, B. Li, Ind. Eng. Chem. Res. 51, 8985 (2012)

    Article  CAS  Google Scholar 

  51. D. Trache, A. Abdelaziz, B. Siouani, J. Therm. Anal. Calorim. 128, 335 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Chemistry, Sardar Patel University, for providing research facility, the Department of Physics, Sardar Patel University, for the Raman and powder-XRD facilities, and Savitribai Phule Pune University, for providing BET DSC and TGA facility. RS and RT are also thankful to DST project no SR/NM/NT-1014/2016 (G) for Junior Research Fellowship and Research Associate fellowship, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragnesh Dave.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, P., Thakkar, R. & Sirach, R. Cobalt copper ferrite: burning rate modifier for composite solid propellants and its catalytic activity on the thermal decomposition of ammonium perchlorate. Res Chem Intermed 48, 555–574 (2022). https://doi.org/10.1007/s11164-021-04599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04599-0

Keywords

Navigation