Log in

Efficient removal of oil pollutant via simultaneous adsorption and photocatalysis using La–N–TiO2–cellulose/SiO2 difunctional aerogel composite

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nano-TiO2 photocatalysts doped with La–N(La–N–TiO2) were prepared by solgel method. The La–N–TiO2 was loaded on the cellulose/SiO2 composite aerogel (La–N–TiO2–CSA). La–N–TiO2–CSA had both oil absorption and oil degradation functions under the sun. The static state water contact angle is up to 148° close to superhydrophobic surface. An apparent decomposition rate of oil is 92%, which is much higher than 26% of pure TiO2. Under the visible light irradiation, the photocurrent density has increased by 50%. Characterization results show that LaONO3 was uniformly distributed in TiO2 crystal. Compared with pure TiO2, the UV–Vis DRS data showed the absorption band of La–N–TiO2 had extended to 441 nm. The La increased the valence band position and N lowered the conduction band position, which reduced the band gap of TiO2 from 3.59 to 2.81 eV. The formation of LaONO3 reduced carrier transfer resistance, and the migration rate and electron–hole separation efficiency were improved. The possible oil decomposition pathways were proposed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Q. Zhu, Q. Pan, F. Liu, J. Phys. Chem. C 115, 17464 (2011)

    Article  CAS  Google Scholar 

  2. F. He, S. Chao, Y. Gao, Mater. Lett. 137, 167 (2014)

    Article  CAS  Google Scholar 

  3. T. Zhang, Z. Li, Y. Lü, Y. Liu, D. Yang, Q. Li, F. Qiu, Chin. J. Chem. Eng. 6, 1282 (2019)

    Article  Google Scholar 

  4. M.M. Radetić, D.M. Jocić, P.M. Iovantić, Z.L. Petrovic, H.F. Thomas, Environ. Sci. Technol. 37, 1008 (2003)

    Article  Google Scholar 

  5. M. Hussein, A.A. Amer II, Sawsan. Int. J. Environ. Sci. Technol. 5, 233 (2008)

    Article  CAS  Google Scholar 

  6. Y. Ye, Z.G. Zang, T.W. Zhou, F. Dong, S.R. Lu, X.S. Tang, W. Wei, Y.B. Zhang, J. Catal. 357, 100 (2018)

    Article  Google Scholar 

  7. X.L. Fan, B. Gao, T. Wang, X.L. Huang, H. Gong, H.R. Xue, H. Guo, L. Song, W. **a, J.P. He, Appl. Catal. A Gen. 528, 52 (2016)

    Article  CAS  Google Scholar 

  8. Q.C. Du, G.X. Lu, Appl. Surf. Sci. 305, 235 (2014)

    Article  CAS  Google Scholar 

  9. Y. Kim, H.M. Hwang, L. Wang, I. Kim, Y. Yoon, H. Lee, Sci. Rep. (2016). https://doi.org/10.1038/srep25212

    Article  PubMed  PubMed Central  Google Scholar 

  10. F. **ao, Chem. Commun. 48, 6538 (2012)

    Article  CAS  Google Scholar 

  11. F. **ao, J. Phys. Chem. C 116, 16487 (2012)

    Article  CAS  Google Scholar 

  12. V.M. Mendez-Florez, D. Friedmann, D.W. Bahnemann, Int. J. Photoenergy (2008). https://doi.org/10.1155/2008/280513

    Article  Google Scholar 

  13. H.W. Chen, Y. Ku, Y.L. Kuo, Water Res. 41, 2069 (2007)

    Article  CAS  Google Scholar 

  14. S. Obregón, G. Colón, Chem. Commun. 48, 7865 (2012)

    Article  Google Scholar 

  15. D.C. Romero, G.T. Torres, J.C. Arevalo, R. Gomez, A. Aguilar-Elguezabal, J. Sol–Gel. Sci. Technol. 56, 219 (2010)

    Article  Google Scholar 

  16. P.A. Mangrulkar, S.P. Kamble, M.M. Joshi, J.S. Meshram, N.K. Labhsetwar, S.S. Rayalu, Int. J. Photoenergy (2012). https://doi.org/10.1155/2012/780562

    Article  Google Scholar 

  17. H.Y. Li, D.J. Wang, H.M. Fan, P. Wang, T.F. Jiang, T.F. **e, J. Colloid Interface Sci. 354, 175 (2011)

    Article  CAS  Google Scholar 

  18. F. Spadavecchia, G. Cappelletti, S. Ardizzone, C.L. Bianchi, S. Cappelli, C. Oliva, P. Scardi, M. Leoni, P. Fermo, Appl. Catal. B 96, 314 (2010)

    Article  CAS  Google Scholar 

  19. P. Periyat, D.E. McCormack, S.J. Hinder, S.C. Pillai, J. Phys. Chem. C 113, 3246 (2009)

    Article  CAS  Google Scholar 

  20. F.X. **ao, J. Miao, H.Y. Wang, B. Liu, J. Mater. Chem. A 1, 12229 (2013)

    Article  CAS  Google Scholar 

  21. J.A. Seabold, K. Shankar, R.H.T. Wilke, M. Paulose, O.K. Varghese, C.A. Grimes, K.S. Choi, Chem. Mater. 20, 5266 (2008)

    Article  CAS  Google Scholar 

  22. X.F. Gao, H.B. Li, W.T. Sun, Q. Chen, F.Q. Tang, L.M. Peng, J. Phys. Chem. C 113, 7531 (2009)

    Article  CAS  Google Scholar 

  23. S. Liu, L. Yang, S. Xu, S. Luo, Q. Qai, Electrochem. Commun. 11, 1748 (2009)

    Article  CAS  Google Scholar 

  24. Q. Li, J.K. Shang, Environ. Sci. Technol. 43, 8923 (2009)

    Article  CAS  Google Scholar 

  25. D. Liu, Z. Wu, F. Tian, B.C. Ye, Y. Tong, J. Alloy. Compd. 676, 489 (2016)

    Article  CAS  Google Scholar 

  26. C. Wang, Y. Ao, P. Wang, J. Hou, J. Hazard. Mater. 178, 517 (2010)

    Article  CAS  Google Scholar 

  27. X. Shen, Z. Liu, S. **e, J. Guo, J. Hazard. Mater. 162, 1193 (2009)

    Article  CAS  Google Scholar 

  28. X. Wu, C. Lu, Z. Zhou, G. Yuan, R. **ong, X. Zhang, Environ. Sci. Nano 1, 71 (2014)

    Article  CAS  Google Scholar 

  29. E.M. Bakhsh, S.A. Khan, H.M. Marwani, E.Y. Danish, A.M. Asiri, Int. J. Biol. Macromol. 107, 668 (2018)

    Article  CAS  Google Scholar 

  30. X. An, D. Cheng, L. Dai, B. Wang, H.J. Ocampo, J. Nasrallah, X. Jia, J. Zou, Y. Long, Y. Ni, Appl. Catal. B-environ. 206, 53 (2017)

    Article  CAS  Google Scholar 

  31. G.G. Kaya, E. Yilmaz, H. Deveci, J. Chem. Technol. Biotechnol. 94, 2729 (2019)

    Article  Google Scholar 

  32. H.L. Wang, H.P. Qi, X.N. Wei, X.Y. Liu, W.F. Jiang, Chin. J. Catal. 11, 2025 (2016)

    Article  Google Scholar 

  33. H.S. Chae, S.J. Song, Y.H. Park, Mol. Cryst. Liq. Cryst. 492.1, 28/[392] (2008)

  34. Z. Wu, S. Cao, C. Zhang, L. Piao, Nanotechnology (2017). https://doi.org/10.1088/1361-6528/aa7374

    Article  PubMed  PubMed Central  Google Scholar 

  35. J.G. Yu, J.C. Yu, W.K. Ho, Z.T. Jiang, New J. Chem. 26, 607 (2002)

    Article  CAS  Google Scholar 

  36. D. Pan, J. Jiao, Z. Li, Y. Guo, C. Feng, Y. Liu, L. Wang, M. Wu, ACS Sustain. Chem. Eng. 3, 2405 (2015)

    Article  CAS  Google Scholar 

  37. Y. Li, Q. Zhang, J. Jiang, L. Li, Environ. Technol. (2019). https://doi.org/10.1080/09593330.2019.1647291

    Article  PubMed  Google Scholar 

  38. E. Ambrosio, D.L. Lucca, M.H.B. Garcia, M.T.F. Souza, T.K.F.S. Freitas, R.P. Souza, T.K.F. Freitas, R.P. Souza, J.V. Visentainer, J.C. Garcia, Sci. Total Environ. 581–582, 1 (2017)

    Article  Google Scholar 

  39. X. Wang, J. Wang, J. Zhang, B. Louangsouphom, J. Song, X. Wang, J. Zhao, J. Photochem. Photobiol. A. Chem. 347, 105 (2017)

    Article  CAS  Google Scholar 

  40. X. Wang, W. Wang, X. Wang, J. Zhang, J. Zhao, Z. Gu, L. Zhou, Appl. Surf. Sci. 349, 264 (2015)

    Article  CAS  Google Scholar 

  41. J. Zhang, X. Wang, Y. Bu, X. Wang, J. Song, P. **a, R. Ma, B. Louangsouphom, S. Ma, J. Zhao, Chem. Eng. J. 306, 460 (2016)

    Article  CAS  Google Scholar 

  42. F.Z. Ren, H.Y. Li, Y.X. Wang, J.J. Yang, Appl. Catal. B 176, 160 (2015)

    Article  Google Scholar 

  43. W. Zhao, F. Liang, Z.M. **, X.B. Shi, P.H. Yin, X.R. Wang, C. Sun, Z.Q. Gao, L.S. Liao, J. Mater. Chem. A 2, 13226 (2014)

    Article  CAS  Google Scholar 

  44. D.H. Wang, L. Jia, X.L. Wu, L.Q. Lu, A.W. Xu, Nanoscale 4, 576 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant No. 2018-K37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Chen, X., Zhou, Y. et al. Efficient removal of oil pollutant via simultaneous adsorption and photocatalysis using La–N–TiO2–cellulose/SiO2 difunctional aerogel composite. Res Chem Intermed 46, 1805–1822 (2020). https://doi.org/10.1007/s11164-019-04064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04064-z

Keywords

Navigation