Log in

Refractory Foam Concrete for Nuclear Power Engineering

  • Published:
Refractories and Industrial Ceramics Aims and scope

Refractory foam concrete has been developed in terms of its composition for long-term use at high temperatures in the nuclear power industry. Foam concrete based on Portland cement has an average density class of D700 and a maximum permissible application temperature class of I5 (500°C). Refractory foam concrete has improved deformation characteristics in terms of its axial tension and tensile strength in bending. This study investigated the strength variations of refractory foam concrete samples as a function of the heating temperature up to 400°C and prolonged exposure (up to 2000 h) at 200 and 400°C. A thermodynamic calculation was performed with the possible formation of low-base hydrosilicates (gyrolite and afwillite) up to 400°C, which was confirmed by the results of studies on the phase composition of the refractory foam concrete samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. A. Beregovoy, et al., Refractory Foam Concrete: monograph, PGUAS, Penza (2007).

  2. M. G. Maslennikova, “Lightweight refractory concrete,” Issled. Oblasti Zharost. Betona, Stroyizdat, 64 – 73, Moscow (1981).

  3. V. M. Gorin, V. Yu. Sukhov, et al., “Lightweight refractory concrete of cellular structure,” Stroit. Mater., No. 8, 17 – 19 (2003).

  4. K. D. Nekrasov, M. G. Maslenikova, Lightweight Refractory Concretes on Porous Aggregates [in Russian], Stroyizdat, Moscow (1982).

    Google Scholar 

  5. K. D. Nekrasov, A. P. Tarasova, Refractory Concrete on Portland Cement [in Russian], Stroyizdat, Moscow (1969).

    Google Scholar 

  6. K. D. Nekrasov, Refractory Concrete [in Russian], Promstroyizdat, Moscow (1957).

    Google Scholar 

  7. V. I. Barkhatov, I. P. Dobrovolsky, and Yu. Sh. Kapkaev, Production and Consumption Waste - a Reserve of Building Materials, monograph, Izdatel’stvo Chelyab. Gos. Univ., Chelyabinsk (2017).

    Google Scholar 

  8. V. A. Abyzov, “Refractory cellular concrete based on phosphate binder from waste of production and recycling of aluminum,” Proc. Eng., 206, 783 – 789 (2017). https://www.sciencedirect.com/science/article/pii/S1877705817352360.

  9. Y. H. Mugahed Amran, Nima Farzadnia, and A. A. Abang Ali, “Properties and applications of foamed concrete: a review,” Constr. Build. Mater., 101, part 1, 990 – 1005 (2015). DOI: https://doi.org/10.1016/j.conbuildmat.2015.10.112.

  10. Md Azree Othuman, Y. C. Wang, “Elevated-temperature thermal properties of lightweight foamed concrete,” Constr. Build. Mater., 25(2), 705 – 716 (2011). DOI: https://doi.org/10.1016/j.conbuildmat.2010.07.016.

  11. J. E. Martinez-Martinez, F. P. Alvarez Rabanal, M. Lazaro, et al., “Assessment of lightweight concrete thermal properties at elevated temperatures,” Appl. Sci., No. 11, 10023 (2021). DOI: https://doi.org/10.3390/app112110023.

  12. A. Adnan, R. Edwards, “Thermal behavior of novel lightweight concrete at ambient and elevated temperatures: experimental, modeling and parametric studies,” Constr. Build. Mater., 31, 174 – 187 (2012). DOI: https://doi.org/10.1016/j.conbuildmat.2011.12.096.

    Article  Google Scholar 

  13. G. Mathew, N. Sureshbabu, “Influence of temperature on bondslip characteristics of concrete containing fly ash,” J. Civ Eng., No. 21, 1013 – 1023 (2020). DOI: https://doi.org/10.1007/s42107-020-00258-8.

  14. Y. Zhang, Q. Zhou, J.Woody Ju, and M. Bauchy, “New insights into the mechanism governing the elasticity of calcium silicate hydrate gels exposed to high temperature: a molecular dynamics study,” Cem. Concr. Res., 141, Article No. 106333 (2021). DOI: https://doi.org/10.1016/j.cemconres.2020.106333.

  15. V. Z. Zadeh, C. P. Bobko, “Nanoscale mechanical properties of concrete containing blast furnace slag and fly ash before and after thermal damage,” Cem. Concr. Res., 37, 215 – 221 (2013). DOI: https://doi.org/10.1016/j.cemconcomp.2012.09.003.

    Article  CAS  Google Scholar 

  16. A. Sedaghatdoost, K. Behfarnia, H. Moosaei, et al., “Investigation on the mechanical properties and microstructure of eco-friendly mortar containing WGP at elevated temperature,” Int. J. Concr. Struct. Mater., No. 15, Article No. 1 (2021). DOI: https://doi.org/10.1186/s40069-020-00434-9.

  17. A. Sycheva, S. Ryabova, A. Solomakhin, et al., “Refractory foam concrete for Civil Projects,” in A. Manakov, A. Edigarian (eds), International scientific siberian transport forum TransSiberia-2021. TransSiberia 2021, Lect. Notes Netw. Syst., 403, Springer, Cham (2022). DOI: https://doi.org/10.1007/978-3-030-96383-5_114.

  18. P. Awoyera, E. Onoja, and A. Adesina, “Fire resistance and thermal insulation properties of foamed concrete incorporating pulverized ceramics and mineral admixtures,” Asian J. Civ. Eng., No. 21, 147 – 156 (2020). DOI: https://doi.org/10.1007/s42107-019-00203-4.

  19. Md Azree Othuman, Y. C. Wang, “Elevated-temperature thermal properties of lightweight foamed concrete,” Cem. Concr. Res., 25(2), 705 – 716 (2011). DOI: https://doi.org/10.1016/j.conbuildmat.2010.07.016.

  20. S. Aydin, B. Baradan, “Effect of pumice and fly ash incorporation on high temperature resistance of cement based mortars,” Cem. Concr. Res., 37(6), 988 – 999 (2007). DOI: https://doi.org/10.1016/j.cemconres.2007.02.005.

    Article  CAS  Google Scholar 

  21. Cox S. Beth, Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics: a thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science Orlando, Florida (2014).

  22. M. Venya, Cem. Concr. Res., ed. B. A. Krydova; transl. from French by F. M. Ivanov, D. V. Sventsitsky, Stroyizdat, Moscow (1980).

  23. V. I. Babushkin, G. M. Matveev, and O. P. Mchedlov-Petrosyan, Silicate Thermodynamics [in Russian], Izdatel’stvo literatury po stroitel’stvu, arkhitekture i stroitel’nym materialam, Moscow (1972).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Ruabova.

Additional information

Translated from Novye Ogneupory, No. 1, pp. 38 – 45, January, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sycheva, A.M., Ruabova, S.S., Pirogov, S.Y. et al. Refractory Foam Concrete for Nuclear Power Engineering. Refract Ind Ceram 64, 38–45 (2023). https://doi.org/10.1007/s11148-023-00801-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-023-00801-5

Keywords

Navigation