Log in

Theoretical research of the main conversion path of oxygen atom on Co2C catalysts in the Fischer–Tropsch synthesis process

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this paper, the conversion of oxygen atoms in Fischer–Tropsch synthesis of low carbon olefin (FTO) catalyzed by Co2C was investigated. Density functional theory (DFT) was used to investigate the surface reaction mechanism. The mechanism of H2O and CO2 formation was studied. Then the rate control steps for the generation of both were found. Research shows the key step in the formation of water is the hydrogenation of O to OH with an activation energy of 1.18 eV. The formation of COOH is the key step to the formation of CO2 with an activation energy of 1.78 eV. It is clear that the formation of H2O is kinetically dominant over that of CO2. The formation frequency of water and CO2 at different temperatures was investigated using the kinetic Monte Carlo (KMC) method, where the conversion frequency of H2O is about 1.6 times higher than that of CO2. The article indicates that O atoms are more readily converted to H2O than CO2 in the FTO process occurring over the Co2C catalyst.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Materials described in the manuscript includes all relevant raw data and are available to any researcher who read this manuscript.

References

  1. Amghizar I, Vandewalle LA, Van Geem KM, Marin GB (2017) New trends in olefin production. Engineering 3(2):171–178. https://doi.org/10.1016/J.ENG.2017.02.006

    Article  CAS  Google Scholar 

  2. Tong XG, Zhang GY, Wang ZM, Wen ZX, Tian ZJ, Wang HJ, Ma F, Wu YP (2018) Distribution and potential of global oil and gas resources. Pet Explor Dev 45(4):779–789. https://doi.org/10.1016/S1876-3804(18)30081-8

    Article  Google Scholar 

  3. Fischer FATH (1926) The synthesis of petroleum at atmospheric pressures from gasification products of coal. Brennstoff-Chemie 7:97–104

    CAS  Google Scholar 

  4. Yu F, Lin TJ, An YL, Gong K, Wang XX, Sun YH, Zhong LS (2022) Recent advances in Co2C-based nanocatalysts for direct production of olefins from syngas conversion. Chem Commun 58(70):9712–9727. https://doi.org/10.1039/d2cc03048a

    Article  CAS  Google Scholar 

  5. Torres Galvis HM, de Jong KP (2013) Catalysts for production of lower olefins from synthesisgas: a review. ACS Catal 9(3):2130–2149

    Article  Google Scholar 

  6. Zhong LS, Yu F, An YL, Zhao YH, Sun YH, Li ZJ, Lin TJ, Lin YJ, Qi XZ, Dai YY, Gu L, Hu JS, ** SF, Shen Q, Wang H (2016) Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538(7623):84. https://doi.org/10.1038/nature19786

    Article  CAS  PubMed  Google Scholar 

  7. Li ZJ, Yu DM, Yang LY, Cen J, **ao K, Yao N, Li XN (2021) Formation mechanism of the Co2C nanoprisms studied with the CoCe system in the Fischer-Tropsch to Olefin reaction. ACS Catal 11(5):2746–2753. https://doi.org/10.1021/acscatal.0c04504

    Article  CAS  Google Scholar 

  8. Zhai P, Li YW, Wang M, Liu JJ, Cao Z, Zhang J, Xu Y, Liu XW, Li YW, Zhu QJ, **ao DQ, Wen XD, Ma D (2021) Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer–Tropsch route. Chem 7(11):3027–3051. https://doi.org/10.1016/j.chempr.2021.08.019

    Article  CAS  Google Scholar 

  9. Zaffran J, Yang B (2021) Theoretical insights into the formation mechanism of methane, ethylene and methanol in Fischer-Tropsch synthesis at Co2C surfaces. ChemCatChem 13(11):2674–2682. https://doi.org/10.1002/cctc.202100216

    Article  CAS  Google Scholar 

  10. Chen PPLJXL (2019) Carbon monoxide activation on cobalt carbide for Fischer-Tropsch synthesis from first-principles theory. ACS Catal 9(9):8093–8103

    Article  CAS  Google Scholar 

  11. Sahrin NT, Khoo KS, Lim JW, Shamsuddin R, Ardo FM, Rawindran H, Hassan M, Kiatkittipong W, Abdelfattah EA, Da Oh W, Cheng CK (2022) Current perspectives, future challenges and key technologies of biohydrogen production for building a carbon-neutral future: A review. Bioresour Technol. https://doi.org/10.1016/j.biortech.2022.128088

    Article  Google Scholar 

  12. Kresse GHJ (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 17(48):13115

    Article  Google Scholar 

  13. Kresse GFJ (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 16(54):11169

    Article  Google Scholar 

  14. Maintz S, Deringer VL, Tchougreeff AL, Dronskowski R (2013) Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J Comput Chem 34(29):2557–2567. https://doi.org/10.1002/jcc.23424

    Article  CAS  PubMed  Google Scholar 

  15. Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985. https://doi.org/10.1063/1.1323224

    Article  CAS  Google Scholar 

  16. Henkelman G, Jonsson H (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys 111(15):7010–7022. https://doi.org/10.1063/1.480097

    Article  CAS  Google Scholar 

  17. Metropolis NUS (1949) The monte carlo method. J Am Stat Assoc 247(44):335–341

    Article  Google Scholar 

  18. Voter AF (2007) Introduction to the kinetic monte carlo method. In: Sickafus KE, Kotomin EA, Uberuaga BP (eds) Radiation effects in solids. Springer Netherlands, Dordrecht, pp 1–23

    Google Scholar 

  19. Tian L, Huo CF, Cao DB, Yang Y, Xu J, Wu BS, **ang HW, Xu YY, Li YW (2010) Effects of reaction conditions on iron-catalyzed Fischer-Tropsch synthesis: A kinetic Monte Carlo study. J Mol Struct-Theochem 941(1–3):30–35. https://doi.org/10.1016/j.theochem.2009.10.032

    Article  CAS  Google Scholar 

  20. Lin S, Ma JY, Ye XX, **e DQ, Guo H (2013) CO Hydrogenation on Pd(111): competition between Fischer-Tropsch and oxygenate synthesis pathways. J Phys Chem C 117(28):14667–14676. https://doi.org/10.1021/jp404509v

    Article  CAS  Google Scholar 

  21. Jansen A, Agrawal R, Spanu L (2016) Thermodynamics and kinetics of carbon deposits on cobalt: a combined density functional theory and kinetic Monte Carlo study. Phys Chem Chem Phys 18(41):28515–28523. https://doi.org/10.1039/c6cp04719j

    Article  CAS  PubMed  Google Scholar 

  22. Amaya-Roncancio S, Arroyo-Gomez JJ, Linares DH, Sapag K (2020) Direct versus hydrogen-assisted dissociation of CO on iron surfaces: Kinetic Monte Carlo and microkinetic modeling. J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.127188

    Article  Google Scholar 

  23. Huang HY, Yu YZ, Zhang MH (2020) CO dissociation mechanism on Mn-Doped Fe(100) Surface: a computational investigation. Catal Lett 150(6):1618–1627. https://doi.org/10.1007/s10562-019-03066-1

    Article  CAS  Google Scholar 

  24. Yu YZ, Zhang J, Lei H, Zhang MH (2020) Carbon chain growth reaction of synthesis of lower olefins from syngas on Fe–Co catalyst. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.144211

    Article  Google Scholar 

  25. Zhang MH, Chi SC, Huang HY, Yu YZ (2021) Mechanism insight into MnO for CO activation and O removal processes on Co(0001) surface: A DFT and kMC study. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2021.150854

    Article  Google Scholar 

  26. Zhang MH, Yu HP, Yu YZ, Wang LT (2022) Key roles of formyl insertion mechanism and C-O scission of oxygenates on cobalt carbide in syngas Conversion: a detailed reaction network analysis. J Catal 413:455–466. https://doi.org/10.1016/j.jcat.2022.07.005

    Article  CAS  Google Scholar 

  27. Zhang MH, Yu HP, Sun YZ, Yu YZ, Chen YF, Wang LT (2022) Theoretical and experimental insights into CO2 formation on Co2C catalysts in syngas conversion to value-added chemicals. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2022.154379

    Article  Google Scholar 

  28. Manuel O, Rahul N, Anand UN, Akio I (2010) CO activation pathways and the mechanism of Fischer–Tropsch synthesis. J Catal 272(2):287–297

    Article  Google Scholar 

  29. Henkelman G (2017) Atomistic simulations of activated processes in materials. Ann Rev Mater Res. https://doi.org/10.1146/annurev-matsci-071312-121616

    Article  Google Scholar 

  30. Karim W, Spreafico C, Kleibert A, Gobrecht J, VandeVondele J, Ekinci Y, van Bokhoven JA (2017) Catalyst support effects on hydrogen spillover. Nature 541(7635):68. https://doi.org/10.1038/nature20782

    Article  CAS  PubMed  Google Scholar 

  31. Huai L-y STWH (2016) NO reduction by H2 on the Rh(111) and Rh(221) Surfaces: a mechanistic and kinetic study. J Phys Chem C 10(120):5410–5419

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 21978199)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3030 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Z., **ao, C., Gao, J. et al. Theoretical research of the main conversion path of oxygen atom on Co2C catalysts in the Fischer–Tropsch synthesis process. Reac Kinet Mech Cat 136, 1915–1932 (2023). https://doi.org/10.1007/s11144-023-02436-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02436-6

Keywords

Navigation