Log in

Effects of catalyst distribution, particle geometry, and process conditions on the behavior of a water gas shift reactor under moderate pressures: a modeling study

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this paper, different geometries and types of catalyst distribution used for fixed bed WGS reactors that can be placed at the outlet of gasifiers have been studied. It has been shown that spherical eggshell catalysts allow significant reductions in catalytic mass compared to uniform pellets. Moreover, thanks to the possibility of using large pellets offered by eggshell catalysts, the pressure drops observed when using these particles remain acceptable (< 5%) even for a long reactor (Z = 2.8 m) and despite a low feed pressure (P0 = 2.5 atm). Simulations also revealed that operating in isothermal or isoperibolic mode at low temperature (T = 630 K) improves significantly the process efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Ap :

Surface area of catalyst exposed to surrounding fluid (m2)

CCO,Eq :

O concentration at chemical equilibrium (mol m3)

Ci :

Concentration of species i (mol m3)

Ci,S :

Concentration of species i at the particle surface (mol m3)

Ci,F :

Concentration of species i in the bulk phase (mol m3)

Cpi :

Heat capacity at constant pressure of species i (J mol1 K1)

Cpw :

Specific heat capacity of coolant (J kg1 K1)

dp :

Equivalent particle diameter (m)

dpore :

Average pore size (m)

DCO,Ax :

Axial dispersion coefficient of CO (m2 s1)

De ,I :

Effective diffusion coefficient of species i (m2 s1)

Dext :

External Diameter of inner pipe (m)

Dia :

Internal diameter of outer pipe (m)

Dt :

Internal Diameter of inner pipe (m)

e :

Thickness of slab (m)

eactive :

Thickness of the active phase layer (m)

et :

Thickness of reactor tube (m)

Fi:

Molar flow rate of species i (mol s1)

Fi,0 :

Feed stream of species i (mol s1)

Fpress :

Pressure scale-up factor

h:

Heat-transfer coefficient (J s1 m2 K1)

hi :

Individual heat transfer coefficient for packed bed reactor side (J s1 m2 K1)

h0 :

Individual heat transfer coefficient at the annulus side of the reactor (J s1 m2 K1)

KC,I :

Mass-transfer coefficient of species i (m s1)

Ke :

Equilibrium constant of the WGS reaction

ls :

Width of slab (m)

L:

Length of reactor (m)

Lc :

Length of cylindrical particle (m)

Ls :

Length of slab (m)

mw :

Mass flow rate of coolant (kg s1)

Nt :

Number of tubes

P:

Pressure (Pa)

Pr:

Prandlt number

r:

Intraparticle spatial position (m)

rCOf :

Reaction rate under bulk conditions (mol kg1 s1)

rCO(r) :

Reaction rate at r position (mol kg1 s1)

rCOs :

Reaction rate under surface conditions (mol kg1 s1)

rCO(tactive):

Reaction rate at tactive position (mol kg1 s1)

\(\overline{{r }_{CO}}\) :

Apparent reaction rate (mol kg1 s1)

R:

Radius of the particle (m)

Rg :

Universal gas constant (8.3144 J K1 mol1)

Rinerte :

Radius of the inert core (m)

Re:

Reynolds’ number

S:

Cross section of reactor tube (m2)

Sc:

Schmidt number of CO

tactive :

Spatial position inside the active phase layer (m)

T:

Temperature (K)

TC :

Temperature of coolant (K)

Tf :

Temperature of the bulk gas (K)

Ts:

Temperature of the surface of the pellet (K)

us :

Superficial velocity (m s1)

U:

Overall heat transfer coefficient between the jacket and the reactor (W m2 K1)

Vp :

Particle volume (m3)

XCO :

Carbon monoxide conversion

z:

Reactor axial coordinate (m)

∆HR :

Enthalpy of the WGS reaction (J mol1)

∆Tmax :

Maximum temperature variation between the center and the surface of the pellet (K)

εb :

Porosity of catalytic bed

εC :

Intragranular porosity

ɳe :

Overall effectiveness factor

ɳeactive :

Overall effectiveness factor of the active phase layer

ɳs :

Effectiveness factor of the particle

λe :

Effective thermal conductivity (J m1 s1 K1)

λg :

Thermal conductivity of gas mixture (J m1 s1 K1)

λS :

Thermal conductivity of solid (J m1 s1 K1)

λt :

Thermal conductivity of tube wall (J m1 s1 K1)

λw :

Thermal conductivity of coolant (J m1 s1 K1)

µ:

Dynamic viscosity of gas-mixture (kg m1 s1)

µw :

Dynamic viscosity of coolant (kg m1 s1)

ρ:

Density of gas-mixture (kg m3)

ρB :

Density of bed (kg m3)

ρc :

Density of catalyst (kg m3)

τ:

Pore tortuosity

\({\Phi }_{s}\) :

Thiele modulus

GHSV:

Gas hourly space velocity (h1)

RK4:

Runge–Kutta 4th Order

WGS:

Water Gas Shift

References

  1. Chi J, Hongmei Yu (2018) Water electrolysis based on renewable energy for hydrogen production. Chin J Catal 39:390–394. https://doi.org/10.1016/S1872-2067(17)62949-8

    Article  CAS  Google Scholar 

  2. Menia S, Nouicer I, Bakouri Y, M’raoui A, Tebibel H, Khellaf A (2019) Production d’hydrogène par procédes biologiques. Oil Gas Sci Technol 74:1–16. https://doi.org/10.2516/ogst/2018099

    Article  CAS  Google Scholar 

  3. El Bazi W, Bideq M, El Abidi A, Yadir S, Ouartassi B (2022) Numerical study of a water gas shift fixed bed reactor operating at low pressures. Bull Chem Reaction Eng Catal 17:304–321. https://doi.org/10.9767/bcrec.17.2.13510.304-321

    Article  CAS  Google Scholar 

  4. Lang C (2016) Développement de catalyseurs pour la réaction de conversion du gaz à l’eau dans le cadre de la production d’hydrogène par vapogazéification de la biomasse. PhD thesis (in French). Strasbourg : Strasbourg University, France

  5. Lang C, Sécordel X, Kiennemann A, Courson C (2017) Water gas shift catalysts for hydrogen production from biomass steam gasification. Fuel Process Technol 156:246–252. https://doi.org/10.1016/j.fuproc.2016.09.004

    Article  CAS  Google Scholar 

  6. Lang C, Secordel X, Courson C (2017) Copper-based water gas shift catalysts for hydrogen rich syngas production from biomass steam gasification. Energy Fuels 31:12932–12941. https://doi.org/10.1021/acs.energyfuels.7b01765

    Article  CAS  Google Scholar 

  7. Keiski RL, Salmi T, Pohjola VJ (1992) Development and verification of a simulation model for a non-isothermal water gas-shift reactor. Chem Eng J 48:17–29. https://doi.org/10.1016/0300-9467(92)85003-R

    Article  CAS  Google Scholar 

  8. Keiski RL, Desponds O, Chang YF, Somorjai GA (1993) Kinetics of the water-gas shift reaction over sevral alkane activation and water–gas shift catalyst. Appl Catal A 101:317–338. https://doi.org/10.1016/0926-860X(93)80277-W

    Article  CAS  Google Scholar 

  9. Koryabkina NA, Phatak AA, Ruettinger WF, Farrauto RJ, Ribeiro FH (2003) Determination of kinetic parameters for the water-gas-shift reaction on copper catalysts under realistic conditions for fuel cell applications. J Catal 217:233–239. https://doi.org/10.1016/S0021-9517(03)00050-2

    Article  CAS  Google Scholar 

  10. Hla SS, Park D, Duffy GJ, Edwards JH, Roberts DG (2009) Kinetics of high-temperature water-gas shift reaction over two iron-based commercial catalysts using simulated coal-derived syngases. Chem Eng J 146:148–154. https://doi.org/10.1016/j.cej.2008.09.023

    Article  CAS  Google Scholar 

  11. Atwood K, Arnold MR, Appel EG (1950) Water–gas shift reaction. Effect of pressure on rate over an iron–oxide–chromium oxide catalyst. Ind Eng Chem 42:1600–1602. https://doi.org/10.1021/ie50488a038

    Article  CAS  Google Scholar 

  12. Pengmei L, Chuangzhi W, Longlong M, Zhenhong Y (2008) A study on the economic efficiency of hydrogen production from biomass residues in China. Renewable Energy 33:1874–1879. https://doi.org/10.1016/j.renene.2007.11.002

    Article  Google Scholar 

  13. Darmawan A, Aziz M (2021) Innovative energy conversion from biomass waste. Elsevier, Amsterdam

    Google Scholar 

  14. Moneti M, Di Carlo A, Bocci E, Foscolo PU, Villarini M, Carlini M (2016) Influence of the main gasifier parameters on a real system for hydrogen production from biomass. Int J Hydrogen Energy 41:11965–11973. https://doi.org/10.1016/j.ijhydene.2016.05.171

    Article  CAS  Google Scholar 

  15. Hallac BB (2014) Kinetic experimental and modeling studies on iron-based catalysts promoted with lanthana for the high-temperature water-gas shift reaction characterized with operando UV–Visible spectroscopy and for the Fischer-Tropsch synthesis. PhD thesis. Provo: Brigham Young University, USA

  16. El Bazi W, El Abidi A, Kadiri MS, Yadir S (2018) Modeling and simulation of a water gas shift reactor operating at a low pressure. Int J Innov Eng Sci Res 2:47–57

    Google Scholar 

  17. Gancarczyk A, Sindera K, Iwaniszyn M, Piatek M, Macek W, Jodłowski P, Wronski S, Sitarz M, Łojewska J, Kołodziej A (2019) Metal foams as novel catalyst support in environmental processes. Catalysts 9(587):1–13. https://doi.org/10.3390/catal9070587

    Article  CAS  Google Scholar 

  18. Becker ER, Wei J (1977) Non-uniform distribution of catalysts on supports. II. First order reactions with poisoning. J Catal 46:372–381. https://doi.org/10.1016/0021-9517(77)90221-4

    Article  CAS  Google Scholar 

  19. Zimmermann RT, Bremer J, Sundmacher K (2020) Optimal catalyst particle design for flexible fxed-bed CO2 methanation reactors. Chem Eng J 387(123704):1–16. https://doi.org/10.1016/j.cej.2019.123704

    Article  CAS  Google Scholar 

  20. Iglesias I, Fraccari EP, Giunta P (2020) Study of efectiveness factors with non-uniform catalyst distributions for methane steam reforming. React Kinet Mech Catal 130:713–726. https://doi.org/10.1007/s11144-020-01822-8

    Article  CAS  Google Scholar 

  21. Wang Y-N, Xu Y-Y, **ang H-W, Li Y-W, Zhang B-J (2001) Modeling of catalyst pellets for Fischer–Tropsch synthesis. Ind Eng Chem Res 40:4324–4335. https://doi.org/10.1021/ie010080v

    Article  CAS  Google Scholar 

  22. Wang PW, Du Y, Shen WD, Liang JJ, Xu JF (2013) Numerical simulation of catalytic combustion based on different catalyst structures. Adv Mater Res 791–793:311–314. https://doi.org/10.4028/www.scientific.net/AMR.791-793.311

    Article  CAS  Google Scholar 

  23. Lim S, Bae J, Kim K (2009) Study of activity and effectiveness factor of noble metal catalysts for water–gas shift reaction. Int J Hydrogen Energy 34:870–876. https://doi.org/10.1016/j.ijhydene.2008.10.048

    Article  CAS  Google Scholar 

  24. Iglesia E, Soled SL, Baumgartner JE, Reyes SC (1995) Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer–Tropsch synthesis. J Catal 153:108–122. https://doi.org/10.1006/jcat.1995.1113

    Article  CAS  Google Scholar 

  25. Russo V, Mastroianni L, Tesser R, Salmi T, Di Serio M (2020) Intraparticle modeling of non-uniform active phase distribution catalyst. ChemEngineering 4(24):1–15. https://doi.org/10.3390/chemengineering4020024

    Article  Google Scholar 

  26. Mazidi SK, Sadeghi MT, Marvast MA (2013) Optimization of Fischer–Tropsch process in a fixed-bed reactor using non-uniform catalysts. Chem Eng Technol 36:62–72. https://doi.org/10.1002/ceat.201200268

    Article  CAS  Google Scholar 

  27. Mandic M, Branislav T, Zivanic L, Nikacevic N, Bukur DB (2017) Effects of catalyst activity, particle size and shape, and process conditions on catalyst effectiveness and methane selectivity for Fischer–Tropsch reaction: a modeling study. Ind Eng Chem Res 56:2733–2745. https://doi.org/10.1021/acs.iecr.7b00053

    Article  CAS  Google Scholar 

  28. Soled SL, Baumgartner JE, Reyes SC, Iglesia E (1995) Synthesis of eggshell cobalt catalysts by molten salt impregnation techniques. Stud Surf Sci Catal 91:989–997. https://doi.org/10.1016/S0167-2991(06)81842-2

    Article  CAS  Google Scholar 

  29. Peluso E, Galarraga C, De Lasa H (2001) Eggshell catalyst in Fischer–Tropsch synthesis: intrinsic reaction kinetics. Chem Eng Sci 56:1239–1245. https://doi.org/10.1016/S0009-2509(00)00345-6

    Article  CAS  Google Scholar 

  30. Zhu Q, Gao J, Chen J, Wen L-X (2010) Selective hydrogenation of acetylene over egg-shell palladium nano-catalyst. J Nanosci Nanotechnol 10:5641–5647. https://doi.org/10.1166/jnn.2010.2472

    Article  CAS  PubMed  Google Scholar 

  31. Cho E, Yu YJ, Kim Y, Phan TN, Park D, Ko CH (2020) Egg-shell-type Ni supported on MgAl2O4 pellets as catalyst for steam methane reforming: enhanced coke-resistance and pellet stability. Catal Today 352:157–165. https://doi.org/10.1016/j.cattod.2019.11.013

    Article  Google Scholar 

  32. Macias MJ, Ancheyta J (2004) Simulation of an isothermal hydrodesulfurization small reactor with different catalyst particle shapes. Catal Today 98:243–252. https://doi.org/10.1016/j.cattod.2004.07.038

    Article  CAS  Google Scholar 

  33. Soltan Mohammadzadeh JS, Zamaniyan A (2002) Catalyst shape as a design parameter—optimum shape for methane-steam reforming catalyst. Chem Eng Res Des 80:383–391. https://doi.org/10.1205/026387602317446425

    Article  Google Scholar 

  34. Guinta P, Amadeo N, Laborde M (2006) Simulation of a low temperature water gas shift reactor using the heterogeneous model/application to a pem fuel cell. J Power Sources 156:489–496. https://doi.org/10.1016/j.jpowsour.2005.04.036

    Article  CAS  Google Scholar 

  35. Zhang L, Zhang HT, Ying WY, Fang DY (2014) The simulation of an industrial fixed bed reactor for methanol dehydration to dimethyl ether. Energy Sources A 36:2166–2174. https://doi.org/10.1080/15567036.2012.750404

    Article  CAS  Google Scholar 

  36. Tavan Y, Shariati A, Nikou MRK (2015) Validation of experimental results through reactor modeling for catalyzed dehydration of methanol reaction. Energy Sources Part A 37:1210–1218. https://doi.org/10.1080/15567036.2011.605432

    Article  CAS  Google Scholar 

  37. E4tech (2009) Review of technology for the gasification of biomass and wastes https://www.e4tech.com/resources/95-review-of-technologies-for-gasification-of-biomass-and-wastes.php?filter=year%3A2009. accessed 19 Oct 2022

  38. Hrbek J (2022) Status report on thermal gasification of biomass and waste 2021. IEA Bioenergy https://www.ieabioenergy.com/wp-content/uploads/2022/03/Status-Report2021_final.pdf. accessed 19 Oct 2022

  39. Elnashaie SSEH, Alhabdan F (1989) Mathematical modelling and computer simulation of industrial Water–Gas shift converters. Math Comput Model 12:1017–1034. https://doi.org/10.1016/0895-7177(89)90208-2

    Article  Google Scholar 

  40. Adams TA, Barton PI (2009) A dynamic two-dimensional heterogeneous model for water gas shift reactors. Int J Hydrogen Energy 34:8877–8891. https://doi.org/10.1016/j.ijhydene.2009.08.045

    Article  CAS  Google Scholar 

  41. Van Dijk HAJ, Cohen D, Hakeem AA, Makkee M, Damen K (2014) Validation of a water–gas shift reactor model based on a commercial FeCr catalyst for pre-combustion CO2 capture in an IGCC power plant. Int J Greenhouse Gas Control 29:82–91. https://doi.org/10.1016/j.ijggc.2014.07.005

    Article  CAS  Google Scholar 

  42. Rosner F, Rao A, Samuelsen S (2020) Water gas shift reactor modelling and new dimensionless number for thermal management/design of isothermal reactors. Appl Therm Eng 173:1–19. https://doi.org/10.1016/j.applthermaleng.2020.115033

    Article  CAS  Google Scholar 

  43. Kuncharam BVR, Dixon AG (2020) Multi-scale two-dimensional packed bed reactor model for industrial steam methane reforming. Fuel Process Technol 200(106314):1–14. https://doi.org/10.1016/j.fuproc.2019.106314

    Article  CAS  Google Scholar 

  44. Soto V, Ulloa C, Garcia X (2022) A 3D transient CFD simulation of a multi-tubular reactor for power to gas applications. Energies 15(3383):1–21. https://doi.org/10.3390/en15093383

    Article  CAS  Google Scholar 

  45. Zhu J, Cui X, Araya SS (2022) Comparison between 1D and 2D numerical models of a multi-tubular packed-bed reactor for methanol steam reforming. Int J Hydrogen Energy 47:22704–22719. https://doi.org/10.1016/j.ijhydene.2022.05.109

    Article  CAS  Google Scholar 

  46. Petric I, Karić E (2019) Simulation of commercial fixed-bed reactor for maleic anhydride synthesis: application of different kinetic models and industrial process data. Reac Kinet Mech Cat 126:1027–1054. https://doi.org/10.1007/s11144-019-01533-9

    Article  CAS  Google Scholar 

  47. Suhan MBK, Hemal MNR, Choudhury MAAS, Mazumder MAA, Islam M (2020) Optimal design of ammonia synthesis reactor for a process industry. J King Saud Univ Eng Sci 34:23–30. https://doi.org/10.1016/j.jksues.2020.08.004

    Article  Google Scholar 

  48. Behloul CR, Commenge J-M, Castel C (2021) Simulation of reactors under different thermal regimes and study of the internal diffusional limitation in a fixed-bed reactor for the direct synthesis of dimethyl ether from a CO2-rich input mixture and H2. Ind Eng Chem Res 60:1602–1623. https://doi.org/10.1021/acs.iecr.0c05535

    Article  CAS  Google Scholar 

  49. Vernikovskaya N, Ivanova Y, Sheboltasov A, Chumachenko V, Isupova L (2023) Modeling of a two-bed reactor for low-temperature removal of nitrogen oxides in nitric acid production. Catalysts 13(535):1–15. https://doi.org/10.3390/catal13030535

    Article  CAS  Google Scholar 

  50. Hwang S, Smith R (2004) Heterogeneous catalytic reactor design with optimum temperature profile I: application of catalyst dilution and side-stream distribution. Chem Eng Sci 59:4229–4243. https://doi.org/10.1016/j.ces.2004.05.037

    Article  CAS  Google Scholar 

  51. Vadlamudi VK, Palanki S (2011) Modeling and analysis of miniaturized methanol reformer for fuel cell powered mobile applications. Int J Hydrogen Energy 36:3364–3370. https://doi.org/10.1016/j.ijhydene.2010.12.062

    Article  CAS  Google Scholar 

  52. Sanz R, Calles JA, Alique D, Furones L, Ordonez S, Marin P (2015) Hydrogen production in a pore-plated Pd-membrane reactor: experimental analysis and model validation for the Water Gas Shift reaction. Int J Hydrogen Energy 40:3472–3484. https://doi.org/10.1016/j.ijhydene.2014.11.120

    Article  CAS  Google Scholar 

  53. Santacesaria E, Tesser R (2018) The chemical reactor from laboratory to industrial plant: a modern approach to chemical reaction engineering with different case histories and exercises. Springer, Cham

    Book  Google Scholar 

  54. Wakao N, Kaguei S, Funazkri T (1979) Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed-beds—Correlation of Nusselt numbers. Chem Eng Sci 34:325–336. https://doi.org/10.1016/0009-2509(79)85064-2

    Article  CAS  Google Scholar 

  55. Francesconi JA, Mussati MC, Aguirre PA (2007) Analysis of design variables for water–gas-shift reactors by model-based optimization. J Power Sources 173:467–477. https://doi.org/10.1016/j.jpowsour.2007.04.048

    Article  CAS  Google Scholar 

  56. Missen RW, Mims CA, Saville BA (1998) Introduction to chemical reaction engineering and kinetics. Wiley, Danvers

    Google Scholar 

  57. McCabe W, Smith J, Harriot P (2000) Unit operations of chemical engineering, 6th edn. McGraw-Hill, New York

    Google Scholar 

  58. Davis ME, Davis RJ (2003) Fundamentals of chemical reaction engineering. McGraw-Hill, New York

    Google Scholar 

  59. Villermaux J (1993) Génie de la réaction chimique, 2nd edn. Tec & Doc, Paris

    Google Scholar 

  60. Villadsen JV, Stewart WE (1967) Solution of boundary-value problems by orthogonal collocation. Chem Eng Sci 22:1483–1501. https://doi.org/10.1016/0009-2509(67)80074-5

    Article  Google Scholar 

  61. Nodehi A, Mousavian MA (2006) Simulation and optimization of an adiabatic multi-bed catalytic reactor for the oxidation of SO2. Chem Eng Technol 29:84–90. https://doi.org/10.1002/ceat.200600231

    Article  CAS  Google Scholar 

  62. Lee WJ, Froment GF (2008) Ethylbenzene dehydrogenation into styrene: kinetic modeling and reactor simulation. Ind Eng Chem Res 47:9183–9194. https://doi.org/10.1021/ie071098u

    Article  CAS  Google Scholar 

  63. Forment GF, Bischoff KB, Wilde JD (2010) Chemical reactor analysis and design, 3rd edn. Wiley, Hoboken

    Google Scholar 

  64. Marin P, Diez FV, Ordonez S (2012) Fixed bed membrane reactors for WGSR based hydrogen production: optimisation of modelling approaches and reactor performance. Int J Hydrogen Energy 37:4997–5010. https://doi.org/10.1016/j.ijhydene.2011.12.027

    Article  CAS  Google Scholar 

  65. Maklavany DM, Shariati A, Nikou MRK, Roozbehani B (2017) Hydrogen production via low temperature water gas shift reaction: kinetic study, mathematical modeling, simulation and optimization of catalytic fixed bed reactor using gPROMS. Chem Product Process Model. https://doi.org/10.1515/cppm-2016-0063

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wail El-Bazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 527 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Bazi, W., Bideq, M., Yadir, S. et al. Effects of catalyst distribution, particle geometry, and process conditions on the behavior of a water gas shift reactor under moderate pressures: a modeling study. Reac Kinet Mech Cat 136, 1859–1890 (2023). https://doi.org/10.1007/s11144-023-02431-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02431-x

Keywords

Navigation