Log in

Study on the effect of alkali promoters on the formation of cobalt carbide (Co2C) and on the performance of Co2C via CO hydrogenation reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The present investigation deals with an alkali metal assisted synthesis of cobalt carbide (Co2C), starting from carburizing reduced complex precursors (obtained from Co3O4 with the addition of Li2O, Na2O and K2O) using CO as a carburization source. It is found that the Co2C formation could be significantly accelerated by the Li component. A comparative study reveals that the promotion effect of Li component may be related to the H2 adsorption on the reduced precursor, which enhanced the ability of the precursor to react with CO. Furthermore, the Co2C prepared from the precursor containing Li component shows a considerable increase in activity for CO hydrogenation and an improved fraction of higher alcohols in the total alcohol products, compared to the Co2C prepared without promoters. An attempt is made to elucidate the catalytic behavior of the as-prepared Co2C samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Oyama ST (1996) The chemistry of transition metal carbides and nitrides. Blackie Academic, London

    Book  Google Scholar 

  2. Hwu HH, Chen JGG (2005) Chem Rev 105(1):185–212

    Article  CAS  Google Scholar 

  3. Levy RB, Boudart M (1973) Science 181:547–549

    Article  CAS  Google Scholar 

  4. Oyama ST (1992) Catal Today 15:179–200

    Article  CAS  Google Scholar 

  5. Kojima R, Aika A (2001) Appl Catal A 219:141–147

    Article  CAS  Google Scholar 

  6. Rodriguez JA, Dvorak J, Jirsak T (2000) J Phys Chem B 104:11515–11521

    Article  CAS  Google Scholar 

  7. Yu CC, Ramanathan S, Sherif F, Oyama ST (1994) J Phys Chem 98:13038–13041

    Article  CAS  Google Scholar 

  8. Nagai M, Zahidul AM, Matsuda K (2006) Appl Catal A 313:137–145

    Article  CAS  Google Scholar 

  9. Keller V, Wehrer P, Garin F, Ducros R, Maire G (1995) J Catal 153:9–16

    Article  CAS  Google Scholar 

  10. **ao TC, Hanif A, York APE, Nishizaka Y, Green MLH (2002) Phys Chem Chem Phys 4:4549–4554

    Article  CAS  Google Scholar 

  11. Jiao GP, Ding YJ, Zhu HJ, Li XM, Li JW, Lin RH, Dong WD, Gong LF, Pei YP (2009) Appl Catal A 364:137–142

    Article  CAS  Google Scholar 

  12. Frad WA (1968) Adv Inorg Radiochem 11:153

    Article  CAS  Google Scholar 

  13. Zhao YH, Sun HY, Sun KJ, Liu JX, Li WX (2012) Surf Sci 606:598–604

    Article  CAS  Google Scholar 

  14. Lebarbier VM, Mei DH, Kim DH, Andersen A, Male JL, Holladay JE, Rousseau R, Wang Y (2011) J Phys Chem C 115:17440–17451

    Article  CAS  Google Scholar 

  15. Bahr HA, Jessen V (1930) Ber 63:2226–2237

    Article  Google Scholar 

  16. Wang LB, Li QW, Zhu YC, Qian YT (2012) Int J Refrac Met Hard Mater 31:288–292

    Article  CAS  Google Scholar 

  17. Rees EJ, Brady CD, Burstein AGT (2008) Mater Lett 62:1–3

    Article  CAS  Google Scholar 

  18. Hofer LJE, Peebles WC (1947) J Am Chem Soc 69:2497–2500

    Article  CAS  Google Scholar 

  19. Craxford SR, Rideal EK (1939) J Chem Soc 1604–1614

  20. Furuyama Y, Ito K, Dohi S, Taniike A, Kitamura A (2003) J Nucl Mater 313:288–291

    Article  Google Scholar 

  21. Haertling C, Hanrahan RJ, Smith R (2006) J Nucl Mater 349:195–233

    Article  CAS  Google Scholar 

  22. Popescu C, Jianu R, Alexandrescu R, Mihailescu I, Morjan I, Pascu J (1988) Thermochim Acta 129:269–276

    Article  CAS  Google Scholar 

  23. Kopasz J, Ortiz-Villafuente J, Johnson C (1994) Argonne National Laboratory report ANL/CMT/CP 83894

  24. Stecura S (1973) J Less Common Met 33:219–227

    Article  CAS  Google Scholar 

  25. Wang JJ, Chernavskii PA, Khodakov AY, Wang Y (2012) J Catal 286:51–61

    Article  CAS  Google Scholar 

  26. Ernst B, Hilaire L, Kiennemann A (1999) Catal Today 50:413–427

    Article  CAS  Google Scholar 

  27. Ivanova T, Naumkin A, Sidorov A, Eremenko I, Kiskin M (2007) J Electron Spectrosc Relat Phenom 156–158:200–203

    Article  Google Scholar 

  28. Süzer S, Kadirgan F, Söhmen HM (1999) Sol Energy Mater Sol Cells 56:183–189

    Article  Google Scholar 

  29. Hofer LJE, Peebles WC (1947) J Am Chem Soc 69:893–899

    Article  CAS  Google Scholar 

  30. Fang YZ, Liu Y, Zhang LH (2011) Appl Catal A 397:183–191

    Article  CAS  Google Scholar 

  31. Kuhn JN, Ozkan US (2008) J Catal 253:200–211

    Article  CAS  Google Scholar 

  32. Pei YP, Ding YJ, Zang J, Song XG, Dong WD, Zhu HJ, Wang T, Chen WM (2013) Chin J Catal 34:1570–1575

    Article  CAS  Google Scholar 

  33. Tan KF, Xu J, Chang J, Borgna A, Saeys M (2010) J Catal 274:121–129

    Article  Google Scholar 

  34. **ong JM, Ding YJ, Wang T, Yan L, Chen WM, Zhu HJ, Lu Y (2005) Catal Lett 102:265–269

    Article  CAS  Google Scholar 

  35. Le Normand F, Hommet J, Szörényi T, Fuchs C, Fogarassy E (2001) Phys Rev B 64:235416

    Article  Google Scholar 

  36. Delporte P, Meunier F, Pham-Huu C, Vennegues P, Ledoux MJ, Guille J (1995) Catal Today 23:251–267

    Article  CAS  Google Scholar 

  37. Buo M, Martin JM, Le Mogne T, Vovelle L (1991) Appl Surf Sci 47:149–161

    Article  Google Scholar 

  38. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692–1744

    Article  CAS  Google Scholar 

  39. Geerlings JJC, Zonnevylle MC, de Groot CPM (1991) Surf Sci 241:315–324

    Article  CAS  Google Scholar 

  40. Volkova GG, Yurieva TM, Plyasova LM, Naumova MI, Zaikovskii VI (2000) J Mol Catal A 158:389–393

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (20973167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjie Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, Y., Ding, Y., Zhu, H. et al. Study on the effect of alkali promoters on the formation of cobalt carbide (Co2C) and on the performance of Co2C via CO hydrogenation reaction. Reac Kinet Mech Cat 111, 505–520 (2014). https://doi.org/10.1007/s11144-013-0663-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0663-1

Keywords

Navigation