Log in

Polyacylated Anthocyanins Derived from Red Radishes Protect Vascular Endothelial Cells Against Palmitic Acid-Induced Apoptosis via the p38 MAPK Pathway

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Palmitic acid (PA), a widely consumed saturated fat, is known to induce the apoptosis of vascular endothelial cells. This study examined the protective effect of anthocyanin from red radish (ARR), which has been shown to protect the cardiovascular system and is rich in polyacylated pelargonidin (P) glycosides, on PA-treated SV 40 transfected aortic rat endothelial cells (SVAREC). In all, 22 distinct anthocyanins were identified in the ARR via ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry, the most abundant of which were pelargonidin-3-(p-coumaroyl)diglucoside-5-glucoside (31.60%), pelargonidin-3-(feruloyl)diglucoside-5-(malonyl)glucoside (22.98%), pelargonidin-3-(p-coumaroyl)diglucoside-5-(malonyl)glucoside (8.02%), and pelargonidin-3-(feruloyl)diglucoside-5-glucoside (6.25%). P displayed the highest serum level (93.72%) in the ARR-treated mice, while polyacylated P glucosides were also absorbed intact. Furthermore, ARR treatment effectively increased cellular activity and reduced the ratio of Bcl-2-associated X protein : B cell lymphoma-2, while simultaneously alleviating the excessive production of reactive oxygen species in PA-treated SVAREC. Transcriptome and further verification analyses confirmed that the ARR-inhibiting PA-induced apoptosis of SVAREC was related to the p38 mitogen-activated protein kinase signaling pathway. Our results are the first to demonstrate that ARR may be a promising phytochemical in the prevention of PA-induced endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statements

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Abbreviations

ARR:

anthocyanins from red radish

Bcl-2:

B cell lymphoma-2

Bax:

Bcl-2-associated X protein

C3G:

cyanidin-3-glucoside

CVD:

cardiovascular disease

JNK:

c-Jun NH2 terminal

DCFH-DA:

dichlorofluorescein diacetate

ERK:

extracellular signal-regulated kinase

GO:

gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genome

MAPK:

mitogen-activated protein kinase

MKK3:

mitogen-activated protein kinase kinase-3

Mv:

malvidin

Mv3G:

malvidin-3-glucoside

PA:

palmitic acid

P3G:

peonidin-3-glucoside

P3PD5G:

pelargonidin-3-(p-coumaroyl)diglucoside-5-glucoside

P3FD5MG:

pelargonidin-3-(feruloyl)diglucoside-5-(malonyl)glucoside

P3PD5MG:

pelargonidin-3-(p-coumaroyl)diglucoside-5-(malonyl)glucoside

P3FD5G:

pelargonidin-3-(feruloyl)diglucoside-5-glucoside

P:

pelargonidin

P3D5G:

pelargonidin-3-diglucoside-5-glucoside

ROS:

reactive oxygen species

SD:

standard deviation

SVAREC:

SV 40 transfected aortic rat endothelial cells

TNF-α:

tumor necrosis factor-α

UHPLC-QqQ-MS/MS:

ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry

References

  1. Chareonrungrueangchai K, Wongkawinwoot K, Anothaisintawee T, Reutrakul S (2020) Dietary factors and risks of cardiovascular diseases: an umbrella review. Nutrients 12:1088. https://doi.org/10.3390/nu12041088

    Article  CAS  PubMed Central  Google Scholar 

  2. van Rooijen MA, Mensink RP (2020) Palmitic acid versus stearic acid: effects of interesterification and intakes on cardiometabolic risk markers-a systematic review. Nutrients 12:615. https://doi.org/10.3390/nu12030615

    Article  CAS  PubMed Central  Google Scholar 

  3. Zhao Q, Yang H, Liu F, Luo J, Zhao Q, Li X, Yang Y (2019) Naringenin exerts cardiovascular protective effect in a palmitate-induced human umbilical vein endothelial cell injury model via autophagy flux improvement. Mol Nutr Food Res 63:1900601. https://doi.org/10.1002/mnfr.201900601

    Article  CAS  Google Scholar 

  4. Chen JH, Lee MS, Wang CP, Hsu CC, Lin HH (2017) Autophagic effects of Hibiscus sabdariffa leaf polyphenols and epicatechin gallate (ECG) against oxidized LDL-induced injury of human endothelial cells. Eur J Nutr 56:1963–1981. https://doi.org/10.1007/s00394-016-1239-4

    Article  CAS  PubMed  Google Scholar 

  5. Ockermann P, Headley L, Lizio R, Hansmann J (2021) A review of the properties of anthocyanins and their influence on factors affecting cardiometabolic and cognitive health. Nutrients 12:2831. https://doi.org/10.3390/nu13082831

    Article  CAS  Google Scholar 

  6. **a M, Ling W, Zhu H, Ma J, Wang Q, Hou M, Tang Z, Guo H, Liu C, Ye Q (2009) Anthocyanin attenuates CD40-mediated endothelial cell activation and apoptosis by inhibiting CD40-induced MAPK activation. Atherosclerosis 202:41–47. https://doi.org/10.1016/j.atherosclerosis.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  7. Tomisawa T, Nanashima N, Kitajima M, Mikami K, Takamagi S, Maeda H, Horie K, Lai FC, Osanai T (2019) Effects of blackcurrant anthocyanin on endothelial function and peripheral temperature in young smokers. Molecules 24:4295. https://doi.org/10.3390/molecules24234295

    Article  CAS  PubMed Central  Google Scholar 

  8. do Rosario VA, Chang C, Spencer J, Alahakone T, Roodenrys S, Francois M, Weston-Green K, Hölzel N, Nichols DS, Kent K, Williams D, Wright I, Charlton K (2021) Anthocyanins attenuate vascular and inflammatory responses to a high fat high energy meal challenge in overweight older adults: a cross-over, randomized, double-blind clinical trial. Clin Nutr 40:879–889. https://doi.org/10.1016/j.clnu.2020.09.041

    Article  CAS  PubMed  Google Scholar 

  9. Hollands WJ, Armah CN, Doleman JF, Perez-Moral N, Winterbone MS, Kroon PA (2018) 4-Week consumption of anthocyanin-rich blood orange juice does not affect LDL-cholesterol or other biomarkers of CVD risk and glycaemia compared with standard orange juice: a randomised controlled trial. Brit J Nutr 119:415–421. https://doi.org/10.1017/S0007114517003865

    Article  CAS  PubMed  Google Scholar 

  10. Xu JW, Ikeda K, Yamori Y (2007) Inhibitory effect of polyphenol cyanidin on TNF-alpha-induced apoptosis through multiple signaling pathways in endothelial cells. Atherosclerosis 193(2):299–308. https://doi.org/10.1016/j.atherosclerosis.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  11. **a M, Wang M, Tashiro SI, Onodera S, Minami M, Ikejima T (2005) Dracorhodin perchlorate induces a375-s2 cell apoptosis via accumulation of p53 and activation of caspases. Biol Pharm Bull 28:226–232. https://doi.org/10.1248/bpb.28.226

    Article  CAS  PubMed  Google Scholar 

  12. Li W, Pang X, **ement jet drying. LWT - Food Sci Technol 127:109390. https://doi.org/10.1016/j.lwt.2020.109390

    Article  CAS  Google Scholar 

  13. **g P, Zhao SJ, Ruan SY, **e ZH, Dong Y, Yu L (2012) Anthocyanin and glucosinolate occurrences in the roots of Chinese red radish (Raphanus sativus L.), and their stability to heat and pH. Food Chem 133:1569–1576. https://doi.org/10.1016/j.foodchem.2012.02.051

    Article  CAS  Google Scholar 

  14. Park NI, Xu H, Li X, Jang IH, Park S, Ahn GH, Lim YP, Kim SJ, Park SU (2011) Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish (Raphanus sativus). J Agric Food Chem 59:6034–6039. https://doi.org/10.1021/jf200824c

    Article  CAS  PubMed  Google Scholar 

  15. Park CH, Baskar TB, Park SY, Kim SJ, Valan Arasu M, Al-Dhabi NA, Kim JK, Park SU (2016) Metabolic profiling and antioxidant assay of metabolites from three radish cultivars. Molecules 21:157. https://doi.org/10.3390/molecules21020157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li W, Gu M, Gong P, Wang J, Hu Y, Hu Y, Tan X, Wei J, Yang H (2021) Glycosides changed the stability and antioxidant activity of pelargonidin. LWT - Food Sci Technol 147:111581. https://doi.org/10.1016/j.lwt.2021.111581

    Article  CAS  Google Scholar 

  17. Braga ARC, Murador DC, de Souza Mesquita LM, de Rosso VV (2018) Bioavailability of anthocyanins: gaps in knowledge, challenges and future research. J Food Compos Anal 68:31–40. https://doi.org/10.1016/j.jfca.2017.07.031

    Article  CAS  Google Scholar 

  18. Xu Y, Li Y, **e J, **e L, Mo J, Chen W (2021) Bioavailability, absorption, and metabolism of pelargonidin-based anthocyanins using sprague-dawley rats and caco-2 cell monolayers. J Agric Food Chem 69:7841–7850. https://doi.org/10.1021/acs.jafc.1c00257

    Article  CAS  PubMed  Google Scholar 

  19. McGhie T, Walton MC (2007) The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res 51:702–713. https://doi.org/10.1002/mnfr.200700092

    Article  CAS  PubMed  Google Scholar 

  20. Kay CD (2006) Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutr Res Rev 19:137–146. https://doi.org/10.1079/NRR2005116

    Article  CAS  PubMed  Google Scholar 

  21. Na L, Chu X, Jiang S, Li C, Li G, He Y, Liu Y, Li Y, Sun C (2016) Vinegar decreases blood pressure by down–regulating AT1R expression via the AMPK/PGC–1α/PPARγ pathway in spontaneously hypertensive rats. Eur J Nutr 55:1245–1253. https://doi.org/10.1007/s00394-015-0937-7

    Article  CAS  PubMed  Google Scholar 

  22. Ledoux S, Laouari D, Essig M, Runembert I, Trugnan G, Michel JB, Friedlander G (2002) Lovastatin enhances ecto-5’-nucleotidase activity and cell surface expression in endothelial cells. Circ Res 90:420–427. https://doi.org/10.1161/hh0402.105668

    Article  CAS  PubMed  Google Scholar 

  23. Mendiburu F, Simon R (2015) Agricolae - ten years of an open source statistical tool for experiments in breeding, agriculture and biology. PeerJ PrePrints 3: e1404v1. https://doi.org/10.7287/peerj.preprints.1404v1

  24. Chen W, Karangwa E, Yu J, **a S, Feng B, Zhang X (2019) Effect of sodium chloride concentration on off-flavor removal correlated to glucosinolate degradation and red radish anthocyanin stability. J Food Sci Technol 56:937–950. https://doi.org/10.1007/s13197-018-03559-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi J, Simal-Gandara J, Mei J, Ma W, Peng Q, Shi Y, Xu Q, Lin Z, Lv H (2021) Insight into the pigmented anthocyanins and the major potential co-pigmented flavonoids in purple-coloured leaf teas. Food Chem 363:130278. https://doi.org/10.1016/j.foodchem.2021.130278

    Article  CAS  PubMed  Google Scholar 

  26. de Ferrars RM, Czank C, Zhang Q, Botting NP, Kroon PA, Cassidy A, Kay CD (2014) The pharmacokinetics of anthocyanins and their metabolites in humans. Br J Pharmacol 171:3268–3282. https://doi.org/10.1111/bph.12676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu J, Chang F, Li F, Fu H, Wang J, Zhang S, Zhao J, Yin D (2015) Palmitate promotes autophagy and apoptosis through ROS-dependent JNK and p38 MAPK. Biochem Bioph Res Co 463:262–267. https://doi.org/10.1016/j.bbrc.2015.05.042

    Article  CAS  Google Scholar 

  28. Yin J, Wang B, Zhu X, Qu X, Huang Y, Lv S, Mu Y, Luo G (2017) The small glutathione peroxidase mimic 5p may represent a new strategy for the treatment of liver cancer. Molecules 22:1495. https://doi.org/10.3390/molecules22091495

    Article  CAS  PubMed Central  Google Scholar 

  29. ** X, Chen M, Yi L, Chang H, Zhang T, Wang L, Ma W, Peng X, Zhou Y, Mi M (2014) Delphinidin-3-glucoside protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury by autophagy upregulation via the AMPK/SIRT1 signaling pathway. Mol Nutr Food Res 58:1941–1951. https://doi.org/10.1002/mnfr.201400161

    Article  CAS  PubMed  Google Scholar 

  30. Zhu T, Zhao Y, Zhang J, Li L, Zou L, Yao Y, Xu Y (2011) β-Elemene inhibits proliferation of human glioblastoma cells and causes cell-cycle G0/G1 arrest via mutually compensatory activation of MKK3 and MKK6. Int J Oncol 38:419–426. https://doi.org/10.3892/ijo.2010.855

    Article  CAS  PubMed  Google Scholar 

  31. Wang LS, Sun XD, Cao Y, Wang L, Li FJ, Wang YF (2010) Antioxidant and pro-oxidant properties of acylated pelargonidin derivatives extracted from red radish (Raphanus sativus var. niger, Brassicaceae). Food Chem Toxicol 48:2712–2718. https://doi.org/10.1016/j.fct.2010.06.045

    Article  CAS  PubMed  Google Scholar 

  32. Liu M, Mao L, Daoud A, Hassan W, Zhou L, Lin J, Liu J, Shang J (2015) β-Elemene inhibits monocyte-endothelial cells interactions via reactive oxygen species/MAPK/NF-κB signaling pathway in vitro. Eur J Pharmacol 766:37–45. https://doi.org/10.1016/j.ejphar.2015.09.032

    Article  CAS  PubMed  Google Scholar 

  33. Shi Q, Cheng L, Liu Z, Hu K, Ran J, Ge D, Fu J (2015) The p38 MAPK inhibitor SB203580 differentially modulates LPS-induced interleukin 6 expression in macrophages. Cent Eur J Immunol 40:276–282. https://doi.org/10.5114/ceji.2015.54586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Chongqing City (cstc2019jcyj-msxmX0141) and Fundamental Research Project in Natural Science Field of Shaanxi Province (2020-JQ442).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si Tan or Hongyan Y. Yang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhang, G., Tan, S. et al. Polyacylated Anthocyanins Derived from Red Radishes Protect Vascular Endothelial Cells Against Palmitic Acid-Induced Apoptosis via the p38 MAPK Pathway. Plant Foods Hum Nutr 77, 412–420 (2022). https://doi.org/10.1007/s11130-022-00969-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-022-00969-0

Keywords

Navigation