Log in

Device-independent quantum secure direct communication under non-Markovian quantum channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Device-independent quantum secure direct communication (DI-QSDC) is a promising primitive in quantum cryptography aimed towards addressing the problems of device imperfections and key management. However, significant effort is required to tackle practical challenges such as the distance limitation due to the decohering effects of quantum channels. Here, we explore the constructive effect of non-Markovian noise to improve the performance of DI-QSDC. Considering two different environmental dynamics modelled by the amplitude dam** and the dephasing channels, we show that for both cases non-Markovianty leads to a considerable improvement over Markovian dynamics in terms of three benchmark performance criteria of the DI-QSDC task. Specifically, we find that non-Markovian noise (i) enhances the protocol security measured by Bell violation, (ii) leads to a lower quantum bit error rate, and (iii) enables larger communication distances by increasing the capacity of secret communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No data sets were generated or analysed during the current study.

References

  1. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). https://doi.org/10.1145/359340.359342

    Article  MathSciNet  Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. in Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, (1994), pp. 124-134. https://doi.org/10.1109/SFCS.1994.365700

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. ar**v:quant-ph/9605043 (1996). https://doi.org/10.48550/ar**v.quant-ph/9605043

  4. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001). https://doi.org/10.1103/PhysRevA.64.022307

    Article  ADS  Google Scholar 

  5. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002). https://doi.org/10.1103/RevModPhys.74.145

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classic and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  Google Scholar 

  7. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992). https://doi.org/10.1103/PhysRevLett.68.3121

    Article  ADS  MathSciNet  Google Scholar 

  8. Bennett, C.H., Brassard, G.: Quantum cryptography, public key distribution and coin tossing. Theoret. Comput. Sci. 560(Part 1), 7–11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025

    Article  MathSciNet  Google Scholar 

  9. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  ADS  MathSciNet  Google Scholar 

  10. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002). https://doi.org/10.1103/PhysRevA.65.032302

    Article  ADS  Google Scholar 

  11. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999). https://doi.org/10.1103/PhysRevA.59.1829

    Article  ADS  MathSciNet  Google Scholar 

  12. Degen, C.L., Reinhard, F., Cappellaro, P.: Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017). https://doi.org/10.1103/RevModPhys.89.035002

    Article  ADS  MathSciNet  Google Scholar 

  13. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  ADS  MathSciNet  Google Scholar 

  14. Uola, R., Costa, Ana C.S.., Nguyen, H. Chau., Gühne, O.: Quantum steering. Rev. Mod. Phys. 92, 015001 (2020). https://doi.org/10.1103/RevModPhys.92.015001

    Article  ADS  MathSciNet  Google Scholar 

  15. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014). https://doi.org/10.1103/RevModPhys.86.419

    Article  ADS  Google Scholar 

  16. Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V.: Invited Review Article: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011). https://doi.org/10.1063/1.3610677

    Article  ADS  Google Scholar 

  17. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007). https://doi.org/10.1103/PhysRevLett.98.230501

    Article  ADS  Google Scholar 

  18. Pawłowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bell’s inequality violations. Phys. Rev. A 82, 032313 (2010). https://doi.org/10.1103/PhysRevA.82.032313

    Article  ADS  Google Scholar 

  19. Pramanik, T., Kaplan, M., Majumdar, A.S.: Fine-grained Einstein-Podolsky-Rosen steering inequalities. Phys. Rev. A 90, 050305(R) (2014). https://doi.org/10.1103/PhysRevA.90.050305

    Article  ADS  Google Scholar 

  20. Vazirani, U., Vidick, T.: Fully device independent quantum key Distribution. Phys. Rev. Lett. 113, 140501 (2014). https://doi.org/10.1103/PhysRevLett.113.140501

    Article  ADS  Google Scholar 

  21. Khan, I., Heim, B., Neuzner, A., Marquardt, C.: Satellite-based qkd. Opt. Photonics News 29(2), 26–33 (2018). https://doi.org/10.1364/OPN.29.2.000026

    Article  ADS  Google Scholar 

  22. Tang, B.Y., Liu, B., Zhai, Y.P., et al.: High-speed and large-scale privacy amplification scheme for quantum key distribution. Sci. Rep. 9, 15733 (2019). https://doi.org/10.1038/s41598-019-50290-1

    Article  ADS  Google Scholar 

  23. Kołodyński, J., Máttar, A., Skrzypczyk, P., Woodhead, E., Cavalcanti, D., Banaszek, K., Acín, A.: (2020) Device-independent quantum key distribution with single-photon sources. Quantum 4, 260. https://doi.org/10.22331/q-2020-04-30-260

  24. Farkas, M., Juandó, M.B., Łukanowski, K., Kołodyński, J., Acín, A.: Bell nonlocality is not sufficient for the security of standard device-independent quantum key distribution protocols. Phys. Rev. Lett. 127, 050503 (2021). https://doi.org/10.1103/PhysRevLett.127.050503

    Article  ADS  MathSciNet  Google Scholar 

  25. Singh, J., Ghosh, S., Arvind-Goyal, S.K.: Role of Bell-CHSH violation and local filtering in quantum key distribution. Phys. Lett. A. 392, 127158 (2021). https://doi.org/10.1016/j.physleta.2021.127158

    Article  MathSciNet  Google Scholar 

  26. Nadlinger, D.P., Drmota, P., Nichol, B.C., Araneda, G., Main, D., Srinivas, R., Lucas, D.M., Ballance, C.J., Ivanov, K., Tan, E.Y.-Z., Sekatski, P., Urbanke, R.L., Renner, R., Sangouard, N., Bancal, J.-D.: Experimental quantum key distribution certified by Bell’s theorem. Nature 607, 682–686 (2022). https://doi.org/10.1038/s41586-022-04941-5

    Article  ADS  Google Scholar 

  27. Wath, Y., Hariprasad, M., Shah, F., Gupta, S.: Eavesdrop** a Quantum Key Distribution network using sequential quantum unsharp measurement attacks. Eur. Phys. J. Plus 138, 54 (2023). https://doi.org/10.1140/epjp/s13360-023-03664-4

    Article  Google Scholar 

  28. Bera, S., Gupta, S., Majumdar, A.S.: Device-independent quantum key distribution using random quantum states. Quant. Inf. Process 22, 109 (2023). https://doi.org/10.1007/s11128-023-03852-2

    Article  ADS  MathSciNet  Google Scholar 

  29. Takahashi, R., Tanizawa, Y., Dixon, A.: A high-speed key management method for quantum key distribution network, in Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, (2019), pp. 437-442. https://ieeexplore.ieee.org/document/8806052

  30. Liu, X., Luo, D., Lin, G.L., Chen, Z.H., Huang, C.F., Li, S.Z., Zhang, C.X., Zhang, Z.R., Wei, K.J.: Fiber-based quantum secure direct communication without active polarization compensation. Sci. China Phys. Mech. Astron. 65(12), 120311 (2022). https://doi.org/10.1007/s11433-022-1976-0

    Article  ADS  Google Scholar 

  31. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. (Bei**g) 67(4), 367 (2022). https://doi.org/10.1016/j.scib.2021.11.002

    Article  ADS  Google Scholar 

  32. Ying, J.W., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent one-step quantum secure direct communication. Chin. Phys. B 31(12), 120303 (2022). https://doi.org/10.1088/1674-1056/ac8f37

    Article  ADS  Google Scholar 

  33. Cao, Z.W., Lu, Y., Chai, G., Yu, H., Liang, K.X., Wang, L.: Realization of Quantum Secure Direct Communication with Continuous Variable. Research 6, 0193 (2023). https://doi.org/10.34133/research.0193

    Article  Google Scholar 

  34. Zhao, P., Zhong, W., Du, M.M., Li, X.Y., Zhou, L., Sheng, Y.B.: Quantum secure direct communication with hybrid entanglement. Frontiers Phys. 19, 51201 (2024). https://doi.org/10.1007/s11467-024-1396-5

    Article  Google Scholar 

  35. Zhu, P.H., Zhong, W., Du, M.M., Li, X.Y., Zhou, L., Sheng, Y.B.: One-step quantum dialogue. Chin. Phys. B 33, 030302 (2024). https://doi.org/10.1088/1674-1056/ad1c5c

    Article  Google Scholar 

  36. Zhang, C., Zhou, L., Zhong, W., Du, M.M., Sheng, Y.B.: Measurement-device-independent quantum dialogue based on entanglement swap** and phase encoding. Quant. Inf. Process 23, 52 (2024). https://doi.org/10.1007/s11128-024-04260-w

    Article  ADS  MathSciNet  Google Scholar 

  37. Ahn, B., Park, J., Lee, J., Lee, S.: High-dimensional single photon based quantum secure direct communication using time and phase mode degrees. Sci. Rep. 14, 888 (2024). https://doi.org/10.1038/s41598-024-51212-6

    Article  ADS  Google Scholar 

  38. Gupta, S.: Experimental simulation of the quantum secure direct communication using MATLAB and Simulink. Eur. Phys. J. Plus 138, 913 (2023). https://doi.org/10.1140/epjp/s13360-023-04532-x

    Article  Google Scholar 

  39. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017). https://doi.org/10.1103/PhysRevLett.118.220501

    Article  ADS  Google Scholar 

  40. Wang, M., Zhang, W., Guo, J.X., Song, X.T., Long, G.L.: Experimental demonstration of secure relay in quantum secure direct communication network. Entropy 25(11), 1548 (2023). https://doi.org/10.3390/e25111548

    Article  ADS  Google Scholar 

  41. Qi, Z., Li, Y., Huang, Y., Feng, J., Zheng, Y., Chen, X.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10, 183 (2021). https://doi.org/10.1038/s41377-021-00634-2

    Article  ADS  Google Scholar 

  42. Zhang, H., Sun, Z., Qi, R., Yin, L., Long, G.L., Lu, J.: Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl. 11, 83 (2022). https://doi.org/10.1038/s41377-022-00769-w

    Article  ADS  Google Scholar 

  43. Long, G.-L., Pan, D., Sheng, Y.-B., Xue, Q., Lu, J., Hanzo, L.: An evolutionary pathway for the quantum internet relying on secure classical repeaters. IEEE Netw. 36(3), 82–88 (2022). https://doi.org/10.1109/MNET.108.2100375

    Article  Google Scholar 

  44. Paparelle, I., Mousavi, F., Scazza, F., Bassi, A., Paris, M., Zavatta, A.: Practical quantum secure direct communication with squeezed states. ar**v:2306.14322 [quant-ph] (2023). https://doi.org/10.48550/ar**v.2306.14322

  45. Pan, D., Lin, Z., Wu, J., Zhang, H., Sun, Z., Ruan, D., Yin, L., Long, G.L.: Experimental free-space quantum secure direct communication and its security analysis. Photonics Res. 8, 1522–1531 (2020). https://doi.org/10.1364/PRJ.388790

    Article  Google Scholar 

  46. Zhang, Q., Du, M.M., Zhong, W., Sheng, Y.B., Zhou, L.: Single-photon based three-party quantum secure direct communication with identity authentication. Ann. Phys. (Berlin) 536, 2300407 (2023). https://doi.org/10.1002/andp.202300407

    Article  Google Scholar 

  47. Yang, L., Wu, J., Lin, Z., Yin, L., Long, G.: Quantum secure direct communication with entanglement source and single-photon measurement. Sci. China Phys. Mech. Astron. 63, 110311 (2020). https://doi.org/10.1007/s11433-020-1576-y

    Article  ADS  Google Scholar 

  48. **ao, Y.-X., Zhou, L., Zhong, W., Du, M.-M., Sheng, Y.-B.: The hyperentanglement-based quantum secure direct communication protocol with single-photon measurement. Quant. Inf. Process 22, 339 (2023). https://doi.org/10.1007/s11128-023-04097-9

    Article  ADS  MathSciNet  Google Scholar 

  49. Sun, Z.Z., Pan, D., Ruan, D., Long, G.L.: One-sided measurement-device-independent practical quantum secure direct communication. J. Lightw. Technol. 41(14), 4680–4690 (2023). https://doi.org/10.1109/JLT.2023.3244880

    Article  ADS  Google Scholar 

  50. Hong, Y.-P., Zhou, L., Zhong, W., Sheng, Y.-B.: Measurement-device-independent three-party quantum secure direct communication. Quant. Inf. Process 22, 111 (2023). https://doi.org/10.1007/s11128-023-03853-1

    Article  ADS  MathSciNet  Google Scholar 

  51. Li, X.-J., Pan, D., Long, G.-L., Hanzo, L.: Single-photon-memory measurement-device-independent quantum secure direct communication-part II: a practical protocol and its secrecy capacity. IEEE Commun. Lett. 27(4), 1060–1064 (2023). https://doi.org/10.1109/LCOMM.2023.3247176

    Article  Google Scholar 

  52. Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2020). https://doi.org/10.1007/s11433-019-1450-8

    Article  ADS  Google Scholar 

  53. Niu, P.H., Wu, J.W., Yin, L.G., Long, G.L.: Security analysis of measurement-device-independent quantum secure direct communication. Quant. Inf. Process 19, 356 (2020). https://doi.org/10.1007/s11128-020-02840-0

    Article  ADS  MathSciNet  Google Scholar 

  54. Cao, Z., Wang, L., Liang, K., Chai, G., Peng, J.: Continuous-variable quantum secure direct communication based on gaussian map**. Phys. Rev. Appl. 16, 024012 (2021). https://doi.org/10.1103/PhysRevApplied.16.024012

    Article  ADS  Google Scholar 

  55. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12–20 (2020). https://doi.org/10.1016/j.scib.2019.10.025

    Article  Google Scholar 

  56. Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65, 250311 (2022). https://doi.org/10.1007/s11433-021-1863-9

    Article  ADS  Google Scholar 

  57. Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Phys. Rev. Appl. 19, 014036 (2023). https://doi.org/10.1103/PhysRevApplied.19.014036

    Article  ADS  Google Scholar 

  58. Zeng, H., Du, M.-M., Zhong, W., Zhou, L., Sheng, Y.-B.: High-capacity device-independent quantum secure direct communication based on hyper-encoding. Fundam. Res. (2023). https://doi.org/10.1016/j.fmre.2023.11.006

    Article  Google Scholar 

  59. Metger, T., Dulek, Y., Coladangelo, A., Friedman, R.A.: Device-independent quantum key distribution from computational assumptions. New J. Phys. 23, 123021 (2021). https://doi.org/10.1088/1367-2630/ac304b

    Article  ADS  MathSciNet  Google Scholar 

  60. Xu, F., Zhang, Y.Z., Zhang, Q., Pan, J.: Device-independent quantum key distribution with random post selection. Phys. Rev. Lett. 128, 110506 (2022). https://doi.org/10.1103/PhysRevLett.128.110506

    Article  ADS  Google Scholar 

  61. Singh, A., Dev, K., Siljak, H., Joshi, H.D., Magarini, M.: Quantum internet-applications, functionalities, enabling technologies, challenges, and research directions. IEEE Commun. Surv. Tutor. 23(4), 2218–2247 (2021). https://doi.org/10.1109/COMST.2021.3109944

    Article  Google Scholar 

  62. Pan, D., Long, G.-L., Yin, L., Sheng, Y.-B., Ruan, D., Ng, S.X., Lu, J., Hanzo, L.: The evolution of quantum secure direct communication: on the road to the qinternet. IEEE Commun. Surv. Tutor. (Early Access). (2024). https://doi.org/10.1109/COMST.2024.3367535

    Article  Google Scholar 

  63. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004). https://doi.org/10.1103/PhysRevLett.93.140404

    Article  ADS  Google Scholar 

  64. Dodd, P.J., Halliwell, J.J.: Disentanglement and decoherence by open system dynamics. Phys. Rev. A 69, 052105 (2004). https://doi.org/10.1103/PhysRevA.69.052105

    Article  ADS  MathSciNet  Google Scholar 

  65. Yu, T., Eberly, J.H.: Quantum open system theory. Bipartite Aspects Phys. Rev. Lett. 97, 140403 (2006). https://doi.org/10.1103/PhysRevLett.97.140403

    Article  ADS  Google Scholar 

  66. Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Ribeiro, P.H.S., Davidovich, L.: Environment-induced sudden death of entanglement. Science 316, 579 (2007). https://doi.org/10.1126/science.1139892

    Article  ADS  Google Scholar 

  67. Bellomo, B., Franco, R.L., Maniscalco, S., Compagno, G.: Entanglement trap** in structured environments. Phys. Rev. A 78, 060302(R) (2008). https://doi.org/10.1103/PhysRevA.78.060302

    Article  ADS  Google Scholar 

  68. Salles, A., de Melo, F., Almeida, M.P., Hor-Meyll, M., Walborn, S.P., Ribeiro, P.H.S., Davidovich, L.: Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008). https://doi.org/10.1103/PhysRevA.78.022322

    Article  ADS  Google Scholar 

  69. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009). https://doi.org/10.1126/science.1167343

    Article  ADS  MathSciNet  Google Scholar 

  70. Badziag, P., Horodecki, M., Horodecki, P., Horodecki, R.: Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62, 012311 (2000). https://doi.org/10.1103/PhysRevA.62.012311

    Article  ADS  Google Scholar 

  71. Bandyopadhyay, S.: Origin of noisy states whose teleportation fidelity can be enhanced through dissipation. Phys. Rev. A 65, 022302 (2002). https://doi.org/10.1103/PhysRevA.65.022302

    Article  ADS  Google Scholar 

  72. Ghosh, B., Majumdar, A.S., Nayak, N.: Environment assisted entanglement enhancement. Phys. Rev. A 74, 052315 (2006). https://doi.org/10.1103/PhysRevA.74.052315

    Article  ADS  Google Scholar 

  73. Gupta, R., Gupta, S., Mal, S., De Sen, A.: Performance of dense coding and teleportation for random states: augmentation via pre-processing. Phys. Rev. A 103, 032608 (2021). https://doi.org/10.1103/PhysRevA.103.032608

    Article  ADS  Google Scholar 

  74. Franco, R.L., Compagno, G.. Lectures on General Quantum Correlations and their Applications, in Lectures on General Quantum Correlations and their Applications, edited by F. F. Fanchini, D. O. S. Pinto, and G. Adesso, Springer, (2017). https://doi.org/10.1007/978-3-319-53412-1

  75. Mazzola, L., Maniscalco, S., Piilo, J., Suominen, K.-A., Garraway, B.M.: Sudden death and sudden birth of entanglement in common structured reservoirs. Phys. Rev. A 79, 042302 (2009). https://doi.org/10.1103/PhysRevA.79.042302

    Article  ADS  Google Scholar 

  76. Gupta, R., Gupta, S., Mal, S., De Sen, A.: Constructive feedback of non-markovianity on resources in random quantum states. Phys. Rev. A 105, 012424 (2022). https://doi.org/10.1103/PhysRevA.105.012424

    Article  ADS  MathSciNet  Google Scholar 

  77. Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377, 3209 (2013). https://doi.org/10.1016/j.physleta.2013.10.012

    Article  ADS  MathSciNet  Google Scholar 

  78. Datta, S., Goswami, S., Pramanik, T., Majumdar, A.S.: Preservation of a lower bound of quantum secret key rate in the presence of decoherence. Phys. Lett. A 381, 897 (2017). https://doi.org/10.1016/j.physleta.2017.01.019

    Article  ADS  MathSciNet  Google Scholar 

  79. Gupta, S., Datta, S., Majumdar, A.S.: Preservation of quantum non-bilocal correlations in noisy entanglement-swap** experiments using weak measurements. Phys. Rev. A 98, 042322 (2018). https://doi.org/10.1103/PhysRevA.98.042322

    Article  ADS  Google Scholar 

  80. Goswami, S., Ghosh, S., Majumdar, A.S.: Protecting quantum correlations in the presence of amplitude dam** channel. Phys. A Math. Theor. 54, 045302 (2021). https://doi.org/10.1088/1751-8121/abd59f

    Article  ADS  Google Scholar 

  81. Laine, E.-M., Breuer, H.-P., Piilo, J.: Nonlocal memory effects allow perfect teleportation with mixed states. Sci. Rep. 4, 4620 (2014). https://doi.org/10.1038/srep04620

    Article  Google Scholar 

  82. Altherr, A., Yang, Y.: Quantum metrology for non-markovian processes. Phys. Rev. Lett. 127, 060501 (2021). https://doi.org/10.1103/PhysRevLett.127.060501

    Article  ADS  MathSciNet  Google Scholar 

  83. Bhattacharya, S., Bhattacharya, B., Majumdar, A.S.: Thermodynamic utility of non-Markovianity from the perspective of resource interconversion. J. Phys. A Math. Theor. 53, 335301 (2020). https://doi.org/10.1088/1751-8121/aba0ee

    Article  MathSciNet  Google Scholar 

  84. Bhattacharya, S., Bhattacharya, B., Majumdar, A.S.: Convex resource theory of non-Markovianity. J. Phys. A Math. Theor. 54, 035302 (2020). https://doi.org/10.1088/1751-8121/abd191

    Article  ADS  MathSciNet  Google Scholar 

  85. Liu, B.-H., Li, L., Huang, Y., Li, C.-F., Guo, G.-C., Laine, E.-M., Breuer, H.-P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nature Phys. 7, 931 (2011). https://doi.org/10.1038/nphys2085

    Article  ADS  Google Scholar 

  86. Mele, F.A., De Palma, G., Fanizza, M., Giovannetti, V., Lami, L.: Optical fibres with memory effects and their quantum communication capacities, ar**v:2309.17066 [quant-ph] (2023). https://doi.org/10.48550/ar**v.2309.17066

  87. Mele, F.A., Lami, L., Giovannetti, V.: Restoring Quantum Communication Efficiency over High Loss Optical Fibers. Phys. Rev. Lett. 129, 180501 (2022). https://doi.org/10.1103/PhysRevLett.129.180501

    Article  ADS  MathSciNet  Google Scholar 

  88. Mele, F.A., Lami, L., Giovannetti, V.: Quantum optical communication in the presence of strong attenuation noise. Phys. Rev. A 106, 042437 (2022). https://doi.org/10.1103/PhysRevA.106.042437

    Article  ADS  MathSciNet  Google Scholar 

  89. Wootters, W., Zurek, W.: A single quantum cannot be cloned. Nature 299, 802–803 (1982). https://doi.org/10.1038/299802a0

    Article  ADS  Google Scholar 

  90. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004). https://doi.org/10.1103/PhysRevA.69.052319

    Article  ADS  Google Scholar 

  91. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003). https://doi.org/10.1103/PhysRevA.68.042317

    Article  ADS  Google Scholar 

  92. Rivas, A., Huelga, S.F., Plenio, M.B.: Entanglement and Non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105, 050403 (2010). https://doi.org/10.1103/PhysRevLett.105.050403

    Article  ADS  MathSciNet  Google Scholar 

  93. Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of Non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009). https://doi.org/10.1103/PhysRevLett.103.210401

    Article  ADS  MathSciNet  Google Scholar 

  94. Laine, E.-M., Piilo, J., Breuer, H.-P.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81, 062115 (2010). https://doi.org/10.1103/PhysRevA.81.062115

    Article  ADS  Google Scholar 

  95. Laine, E.-M., Piilo, J., Breuer, H.-P.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Progr. Phys. 77, 094001 (2014). https://doi.org/10.1088/0034-4885/77/9/094001

    Article  MathSciNet  Google Scholar 

  96. Breuer, H.-P., Laine, E.-M., Vacchini, B.: Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016). https://doi.org/10.1103/RevModPhys.88.021002

    Article  ADS  Google Scholar 

  97. Bellomo, B., Lo Franco, R., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007). https://doi.org/10.1103/PhysRevLett.99.160502

    Article  ADS  Google Scholar 

  98. Utagi, S., Srikanth, R., Banerjee, S.: Temporal self-similarity of quantum dynamical maps as a concept of memorylessness. Sci. Rep. 10, 20767 (2020). https://doi.org/10.1038/s41598-020-72211-3

    Article  Google Scholar 

  99. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Lutkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009). https://doi.org/10.1103/RevModPhys.81.1301

    Article  ADS  Google Scholar 

  100. Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum states. Royal Soc. 461, 1372 (2005). https://doi.org/10.1098/rspa.2004.1372

    Article  MathSciNet  Google Scholar 

  101. Pironio, S., Acín, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11, 045021 (2009). https://doi.org/10.1088/1367-2630/11/4/045021

    Article  ADS  Google Scholar 

  102. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Problemy Peredachi Informatsii (1973). https://api.semanticscholar.org/CorpusID:118312737

  103. Hu, J.Y., Yu, B., **g, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016). https://doi.org/10.1038/lsa.2016.144

    Article  Google Scholar 

  104. Tang, J.-S., Li, C.-F., Li, Y.-L., Zou, X.-B., Guo, G.-C., Breuer, H.-P., Laine, E.-M., Piilo, J.: Measuring non-Markovianity of processes with controllable system-environment interaction. EPL 97, 10002 (2012). https://doi.org/10.1209/0295-5075/97/10002

    Article  ADS  Google Scholar 

  105. Passos, M., Obando, P., Balthazar, W., Paula, F., Huguenin, J., Sarandy, M.: Non-Markovianity through quantum coherence in an all-optical setup. Opt. Lett. 44, 2478–2481 (2019). https://doi.org/10.1364/OL.44.002478

    Article  ADS  Google Scholar 

  106. Kuhr, S., Gleyzes, S., Guerlin, C., Bernu, J., Hoff, U.B., Deléglise, S., Osnaghi, S., Brune, M., Raimond, J.-M., Haroche, S., et al.: Ultrahigh finesse Fabry-Pérot superconducting resonator. Appl. Phys. Lett. 90, 16 (2007). https://doi.org/10.1063/1.2724816

    Article  Google Scholar 

  107. Milul, O., Guttel, B., Goldblatt, U., Hazanov, S., Joshi, L.M., Chausovsky, D., Kahn, N., Çiftyürek, E., Lafont, F., Rosenblum, S.: Superconducting cavity qubit with tens of milliseconds single-photon coherence time. PRX Quant. 4, 030336 (2023). https://doi.org/10.1103/PRXQuantum.4.030336

    Article  ADS  Google Scholar 

  108. Zapatero, V., Curty, M.: Long-distance device-independent quantum key distribution. Sci. Rep. 9, 17749 (2019). https://doi.org/10.1038/s41598-019-53803-0

    Article  ADS  Google Scholar 

  109. Wang, K.-H., Chen, S.-H., Lin, Y.-C., Li, C.-M.: Non-Markovianity of photon dynamics in a birefringent crystal. Phys. Rev. A 98, 043850 (2018). https://doi.org/10.1103/PhysRevA.98.043850

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SB and ASM acknowledge support from the Project No. DST/ICPS/QuEST/2018/98 from the Department of Science and Technology, Government of India. SG acknowledges the support from QuNu Labs Pvt Ltd and OIST, Japan.

Author information

Authors and Affiliations

Authors

Contributions

Pritam Roy, Subhankar Bera, and Shashank Gupta wrote the main manuscript text. Pritam Roy prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Pritam Roy.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P., Bera, S., Gupta, S. et al. Device-independent quantum secure direct communication under non-Markovian quantum channels. Quantum Inf Process 23, 170 (2024). https://doi.org/10.1007/s11128-024-04397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04397-8

Keywords

Navigation