Log in

An 8.4 Gbps real-time quantum random number generator based on quantum phase fluctuation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on the fundamental uncertainty of quantum mechanics, quantum random number generators can generate truly random number which is critically important for many applications, such as information security. However, while the generation rate of offline quantum random number generators could be up to tens of Gbps or more, that of real-time quantum random number generators is only 3.2 Gbps due to the relatively low post-processing speed, and the application of real-time quantum random number generators is limited. We propose an efficient and robust high-speed real-time quantum random number generation scheme based on quantum phase fluctuation of a distributed feedback laser, with improved post-processing techniques. Firstly, the quantum signal-to-noise ratio is increased by analyzing and quantifying quantum noise. Secondly, a time-interleaved analog-to-digital converter scheme is designed to achieve a real-time sampling rate of 8 GSa/s. Finally, the random bits are extracted using the minimum entropy estimation and Toeplitz-hashing randomness extraction. Experimental results show that the proposed scheme could achieves a real-time generation rate up to 8.4 Gbps, with an estimated offline generation rate of 82.32 Gbps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., Zeilinger, A.: A fast and compact quantum random number generator. Rev. Sci. Instrum. 71(4), 1675–1680 (2000)

    Article  ADS  Google Scholar 

  2. Liu, J., Yang, J., Li, Z., Su, Q., Huang, W., Xu, B., Guo, H.: 117 Gbits/s quantum random number generation with simple structure. IEEE Photonics Technol. Lett. 29(3), 283–286 (2017)

    Article  ADS  Google Scholar 

  3. Herrero-Collantes, M., Carlos Garcia-Escartin, J.: Quantum random number generators. Rev. Mod. Phys 89(1), 015004 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. Xu, H., Massari, N., Gasparini, L., Meneghetti, A., Tomasi, A.: A SPAD-based random number generator pixel based on the arrival time of photons. Integration 64, 22–28 (2019)

    Article  Google Scholar 

  5. Wahl, M., Leifgen, M., Berlin, M., Roehlicke, T., Rahn, H.-J., Benson, O.: An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Appl. Phys. Lett. 98(17), 171105 (2011)

    Article  ADS  Google Scholar 

  6. Wang, F.-X., Wang, C., Chen, W., Wang, S., Lv, F.-S., He, D.-Y., Yin, Z.-Q., Li, H.-W., Guo, G.-C., Han, Z.-F.: Robust quantum random number generator based on avalanche photodiodes. J. Lightwave Technol. 33(15), 3319–3326 (2015)

    Article  ADS  Google Scholar 

  7. Hayashi, M.: Precise evaluation of leaked information with secure randomness extraction in the presence of quantum attacker. Commun. Math. Phys. 333(1), 335–350 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Cai, Y., Chen, Y., Chen, X., Ma, J., Xu, G., Wu, Y., Xu, A., Wu, E.: Quantum calibration of photon-number-resolving detectors based on multi-pixel photon counters. Appl. Sci 9(13), 2638 (2019)

    Article  Google Scholar 

  9. Abellan, C., Amaya, W., Jofre, M., Curty, M., Acin, A., Capmany, J., Pruneri, V., Mitchell, M.W.: Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Opt. Express 22(2), 1645–1654 (2014)

    Article  ADS  Google Scholar 

  10. Gabriel, C., Wittmann, C., Sych, D., Dong, R., Mauerer, W., Mauerer, W., Andersen, U.-L., Marquardt, M., Leuchs, G.: A generator for unique quantum random numbers based on vacuum states. Nat. Photonics 4, 711 (2010)

    Article  ADS  Google Scholar 

  11. Symul, T., Assad, S.-M., Lam, P.-K.: Real time demonstration of high bitrate quantum random number generation with coherent laser light. Appl. Phys. Lett. 98, 231103 (2011)

    Article  ADS  Google Scholar 

  12. Nie, Y.-Q., Huang, L., Liu, Y., Payne, F., Zhang, J., Pan, J.-W.: The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. Rev. Sci. Instrum. 86(6), 063105 (2015)

    Article  ADS  Google Scholar 

  13. Zhang, X.G., Nie, Y.Q., Zhou, H., Liang, H., Ma, X., Zhang, J., Pan, J.W.: Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction. Rev. Sci. Instrum 87(7), 076102 (2016)

    Article  ADS  Google Scholar 

  14. Qi, B.: True randomness from an incoherent source. Rev. Sci. Instrum. 88(11), 113101 (2017)

    Article  ADS  Google Scholar 

  15. Zhou, H., Yuan, X., Ma, X.: Randomness generation based on spontaneous emissions of lasers. Phys. Rev. A 91(6), 062316 (2015)

    Article  ADS  Google Scholar 

  16. Nie, Y.-Q., Zhang, H.-F., Zhang, Z., Wang, J., Ma, X., Zhang, J., Pan, J.-W.: Practical and fast quantum random number generation based on photon arrival time relative to external reference. Appl. Phys. Lett. 104(5), 051110 (2014)

    Article  ADS  Google Scholar 

  17. Xu, F., Qi, B., Ma, X., Xu, H., Zheng, H., Lo, H.-K.: Ultrafast quantum random number generation based on quantum phase fluctuations. Opt. Express 20(11), 12366–12377 (2012)

    Article  ADS  Google Scholar 

  18. Chang, S.-W.: Dressed linewidth enhancement factors in small semiconductor lasers. IEEE J. Selected Topics Quantum Electr 21(6), 157 (2015)

    Article  ADS  Google Scholar 

  19. Henry, C.H.: Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18(2), 259–264 (2015)

    Article  ADS  Google Scholar 

  20. Qi, B., Chi, Y.-M., Lo, H.-K., Qian, L.: High-speed quantum random number generation by measuring phase noise of a single-mode laser. Opt. Lett. 35(3), 312–314 (2010)

    Article  ADS  Google Scholar 

  21. Impagliazzo, R., Jaiswal, R., Kabanets, V., Wigderson, A.: Uniform direct product theorems: simplified, optimized, and derandomized. SIAM J. Comput. 39(4), 1637–1665 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbin Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by National Key Research and Development Project (No. 2018YFB1801900), National Natural Science Foundation of China (No. 61771222), The Fundamental Research Funds for the Central Universities (No. 21620439), Science & Technology Project of Shenzhen (No. JCYJ20170815145900474) and Peng Cheng Laboratory Project of Guangdong Province (No. PCL2018KP004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, W., **e, Z., Li, Y. et al. An 8.4 Gbps real-time quantum random number generator based on quantum phase fluctuation. Quantum Inf Process 19, 405 (2020). https://doi.org/10.1007/s11128-020-02896-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02896-y

Keywords

Navigation