Log in

Diameter and Laplace Eigenvalue Estimates for Left-invariant Metrics on Compact Lie Groups

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let G be a compact connected Lie group of dimension m. Once a bi-invariant metric on G is fixed, left-invariant metrics on G are in correspondence with m × m positive definite symmetric matrices. We estimate the diameter and the smallest positive eigenvalue of the Laplace-Beltrami operator associated to a left-invariant metric on G in terms of the eigenvalues of the corresponding positive definite symmetric matrix. As a consequence, we give partial answers to a conjecture by Eldredge, Gordina and Saloff-Coste; namely, we give large subsets \(\mathcal {S}\) of the space of left-invariant metrics \({\mathscr{M}}\) on G such that there exists a positive real number C depending on G and \(\mathcal {S}\) such that λ1(G,g)diam(G,g)2C for all \(g\in \mathcal {S}\). The existence of the constant C for \(\mathcal {S}={\mathscr{M}}\) is the original conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev, A., Barilari, D., Boscain, U.: Comprehensive Introduction to Sub-Riemannian geometry, A. Cambridge Stud. Adv Math, vol. 181. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  2. Berger, M.: A Panoramic View of Riemannian Geometry. Springer-Verlag, Berlin (2003). https://doi.org/10.1007/978-3-642-18245-7

    Book  MATH  Google Scholar 

  3. Bettiol, R., Lauret, E.A., Piccione, P.: The first eigenvalue of a homogeneous CROSS. ar**v:ar**v:2001.08471 (2020)

  4. Bettiol, R., Piccione, P.: Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres. Calc. Var. Partial Differ. Equ. 47(3–4), 789–807 (2013). https://doi.org/10.1007/s00526-012-0535-y

    Article  MATH  Google Scholar 

  5. Burago, D., Burago, Y. u., Ivanov, S.: A course in metric geometry. Grad. Stud. Math. 33. Amer. Math. Soc., Providence (2001)

  6. Cheng, S.-Y.: Eigenvalue comparison theorems its geometric applications. Math. Z. 143, 289–297 (1975). https://doi.org/10.1007/BF01214381

    Article  MATH  Google Scholar 

  7. Eldredge, N., Gordina, M., Saloff-Coste, L.: Left-invariant geometries on SU(2) are uniformly doubling. Geom. Funct. Anal. 28(5), 1321–1367 (2018). https://doi.org/10.1007/s00039-018-0457-8

    Article  MATH  Google Scholar 

  8. Freedman, M.H., Kitaev, A., Lurie, J.: Diameters of homogeneous spaces. Math. Res. Lett. 10(1), 11–20 (2003). https://doi.org/10.4310/MRL.2003.v10.n1.a2

    Article  MATH  Google Scholar 

  9. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967). https://doi.org/10.1007/BF02392081

    Article  MATH  Google Scholar 

  10. Judge, C., Lyons, R.: Upper bounds for the spectral function on homogeneous spaces via volume growth. Rev. Mat. Iberoam. 35(6), 1835–1858 (2019). https://doi.org/10.4171/rmi/1103

    Article  MATH  Google Scholar 

  11. Kliemann, M.: The Thickness of Left-Invariant Metrics on Compact Connected Lie Groups. Thesis, Christian-Albrechts-Universität zu Kiel. https://nbn-resolving.org/urn:nbn:de:gbv:8-diss-248263 (2019)

  12. Knapp, A.W.: Lie Groups Beyond an Introduction. Progr. Math., vol. 140. Birkhäuser Boston Inc., Cambridge (2002)

    Google Scholar 

  13. Kupeli, D.N.: Singular Semi-Riemannian Geometry. Mathematics and Its Applications. Springer, Netherlands (1996). https://doi.org/10.1007/978-94-015-8761-7

    Book  MATH  Google Scholar 

  14. Kuranishi, M.: On everywhere dense imbedding of free groups in Lie groups. Nagoya Math. J. 2, 63–71 (1951)

    Article  MATH  Google Scholar 

  15. Lauret, E.A.: The smallest Laplace eigenvalue of homogeneous 3-spheres. Bull. Lond. Math. Soc. 51(1), 49–69 (2019). https://doi.org/10.1112/blms.12213

    Article  MATH  Google Scholar 

  16. Lauret, E.A.: On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups. Proc. Amer. Math. Soc. 148(8), 3375–3380 (2020). https://doi.org/10.1090/proc/14969

    Article  MATH  Google Scholar 

  17. Le Donne, E.: Lecture notes on sub-Riemannian geometry. Unpublished monograph available on the https://sites.google.com/site/enricoledonne/ author’s web page (2020)

  18. Li, P.: Eigenvalue estimates on homogeneous manifolds. Comment. Math. Helvetici 55, 347–363 (1980). https://doi.org/10.1007/BF02566692

    Article  MATH  Google Scholar 

  19. Li, P., Yau, S.-T.: Estimates of eigenvalues of a compact Riemannian manifold. In: Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii (1979) Proc. Sympos. Pure Math. XXXVI), pp 205–239 (1980)

  20. Ling, J., Lu, Z.: Bounds of eigenvalues on Riemannian manifolds. Trends Partial Differ. Equ. Adv. Lect. Math. (ALM) 10, 241–264 (2010). Int. Press, Somerville, MA.

    MATH  Google Scholar 

  21. Virgós, E.M.: Non-closed Lie subgroups of Lie groups. Ann. Global Anal. Geom. 11(1), 35–40 (1993). https://doi.org/10.1007/BF00773362

    Article  MATH  Google Scholar 

  22. Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. Math. Surv. Monogr., 91, Amer. Math. Soc., Providence (2002)

  23. Mutô, H., Urakawa, H.: On the least positive eigenvalue of Laplacian for compact homogeneous spaces. Osaka. J. Math. 17(2), 471–484 (1980). https://doi.org/10.18910/12474

    MATH  Google Scholar 

  24. Podobryaev, A.V.: Diameter of the Berger sphere. Math. Notes 103 (5–6), 846–851 (2018). https://doi.org/10.1134/S0001434618050188

    Article  MATH  Google Scholar 

  25. Podobryaev, A.V., Sachkovm, Y.L.: Cut locus of a left invariant Riemannian metric on SO3 in the axisymmetric case. J. Geom. Phys. 110, 436–453 (2016). https://doi.org/10.1016/j.geomphys.2016.09.005

    Article  Google Scholar 

  26. Richardson, RW: A rigidity theorem for subalgebras of Lie and associative algebras. Illinois J. Math. 11, 92–110 (1967). https://doi.org/10.1215/ijm/1256054787

    Article  MATH  Google Scholar 

  27. Schoen, R., Yau, S.-T.: Lectures on Differential Geometry. International Press, Cambridge MA (1994)

    MATH  Google Scholar 

  28. Sugahara, K.: On the diameter of compact homogeneous Riemannian manifolds. Publ. Res. Inst. Math. Sci. 16, 835–847 (1980). https://doi.org/10.2977/prims/1195186932

    Article  MATH  Google Scholar 

  29. Urakawa, H.: On the least positive eigenvalue of the Laplacian for compact group manifolds. J. Math. Soc. Japan 31(1), 209–226 (1979). https://doi.org/10.2969/jmsj/03110209

    Article  MATH  Google Scholar 

  30. Urakawa, H.: The first eigenvalue of the Laplacian for a positively curved homogeneous Riemannian manifold. Compos. Math. 59(1), 57–71 (1986)

    MATH  Google Scholar 

  31. Urakawa, H.: Spectral Geometry of the Laplacian. Spectral Analysis and Differential Geometry of the Laplacian. World Scientific, Hackensack NJ (2017). https://doi.org/10.1142/10018

    Book  MATH  Google Scholar 

  32. Wallach, N.: Harmonic analysis on homogeneous spaces Pure and Applied Mathematics, vol. 19. Marcel Dekker, Inc., New York (1973)

    Google Scholar 

  33. Yang, D.: Lower bound estimates of the first eigenvalue for compact manifolds with positive Ricci curvature. Pac. J. Math. 190(2), 383–398 (1999). https://doi.org/10.2140/pjm.1999.190.383

    Article  MATH  Google Scholar 

  34. Yang, L.: Injectivity radius and Cartan polyhedron for simply connected symmetric spaces. Chin. Ann. Math., Ser B 28(6), 685–700 (2007). https://doi.org/10.1007/s11401-006-0400-4

    Article  MATH  Google Scholar 

  35. Yang, L.: Injectivity radius for non-simply connected symmetric spaces via Cartan polyhedron. Osaka J. Math. 45(2), 511–540 (2008)

    MATH  Google Scholar 

  36. YCor’s answer to the MathOverflow question On maximal closed connected subgroups of a compact connected semisimple Lie group? https://mathoverflow.net/q/336560 (version: 2019-07-19)

  37. Zhong, J.Q., Yang, H.C.: On the estimate of the first eigenvalue of a compact Riemannian manifold. Sci. Sinica Ser. A 27(12), 1265–1273 (1984)

    MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful for helpful and motivating conversations with Renato Bettiol, Yves de Cornulier, Nate Eldredge, Lenny Fukshansky, Fernando Galaz-García, Jorge Lauret, Enrico Le Donne, Juan Pablo Rossetti, Michael Ruzhansky, Dorothee Schueth, and Ovidiu Cristinel Stoica. The author is greatly indebted to the referee for a careful reading and for providing a counterexample of a conjecture in the first submitted version of the article.

Funding

This research was supported by grants from CONICET, FonCyT (BID-PICT 2018-02073), SeCyT, and the Alexander von Humboldt Foundation (return fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio A. Lauret.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauret, E.A. Diameter and Laplace Eigenvalue Estimates for Left-invariant Metrics on Compact Lie Groups. Potential Anal 58, 37–70 (2023). https://doi.org/10.1007/s11118-021-09932-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-021-09932-1

Keywords

Mathematics Subject Classification (2010)

Navigation