Log in

Cesàro vector lattices and their ideals of finite elements

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

For the Cesàro matrix \(C=(c_{nm})_{n,m\in \mathbb {N}}\), where \(c_{nm}=\frac{1}{n}\), if \(n\ge m\) and \(c_{nm}=0\) otherwise, the Cesàro sequence spaces \(ces_0,\, ces_p\) (for \(1<p< \infty \)) and \(ces_\infty \) are defined. These spaces turn out to be real vector lattices and with respect to a corresponding (naturally introduced) norm they are all Banach lattices, and so possess (or not possess) some interesting properties. In particular, the relations to their generating ideals \(c_0, \, \ell _p\) and \(\ell _\infty \) are investigated. Finally the ideals of all finite, totally finite and selfmajorizing elements in \(ces_0, ces_p\) (for \(1<p< \infty \)) and \(ces_\infty \) are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The converse is not true, in general.

  2.  A matrix A will be called non-negative, if \(A\ge 0\).

  3.  One has \(\left\| e_n\right\| ^p_{ces_p}=\left\| Ce_n\right\| _p^p=\sum \nolimits _{k=n}^\infty \frac{1}{k^p}\le \sum \nolimits _{k=1}^\infty \frac{1}{k^p}<\infty \).

References

  1. Abramovich, Y.A., Aliprantis, C.D.: An Invitation to Operator Theory. American Mathematical Society Providence, Rhode Island (2002)

    Book  MATH  Google Scholar 

  2. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht (2006)

    Book  MATH  Google Scholar 

  4. Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. 120(576), 130 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Bonet, J., Ricker, W.J.: Operators acting in sequence spaces generated by dual Banach spaces of discrete Cesàro spaces. Funct. Approx. Comment. Math. 64(1), 109–139 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonet, J., Ricker, W.J.: Fréchet and (LB) sequence spaces induced by dual Banach spaces of discrete Cesàro spaces. Bull. Belg. Math. Soc. Simon Stevin 28(1), 1–19 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonet, J., Ricker, W.J.: Order spectrum of the Cesàro operator in Banach lattice sequence spaces. Positivity 24(3), 593–603 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Z.L., Weber, M.R.: On finite elements in vector lattices and Banach lattices. Math. Nachrichten 279(5–6), 495–501 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z.L., Weber, M.R.: On finite elements in sublattices of Banach lattices. Math. Nachrichten 280(5–6), 485–494 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Z.L., Weber, M.R.: On finite elements in lattices of regular operators. Positivity 11, 563–574 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on \(\ell _p\) and \(c_0\). Integral Equ. Oper. Theory 80(1), 61–77 (2014)

    Article  MATH  Google Scholar 

  12. Grosse-Erdmann, K.G.: The Blocking Technique, Weighted Mean Operators and Hardy’s Inequality. Lecture Notes in Mathematics, vol. 1679. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  13. Hahn, N., Hahn, S., Weber, M.R.: On some vector lattices of operators and their finite elements. Positivity 12, 485–494 (2008)

    MATH  Google Scholar 

  14. Hardy, G.H.: Note on a theorem of Hilbert. Math. Z. 6, 314–317 (1920)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jagers, A.A.: A note on Cesàro sequence spaces. Nieuw Arch. Wisk. 3, 113–124 (1974)

    MATH  Google Scholar 

  16. Johnson, P.D., Jr., Mohapatra, R.N.: The maximal normal subspace of the inverse image of a normal space of sequences by a non-negative matrix transformation. Ann. Polon. Math. 2(45), 105–120 (1985)

    Article  MATH  Google Scholar 

  17. Johnson, P.D., Jr., Polat, F.: On spaces derivable from a solid sequence space and a non-negative lower triangular matrix. Oper. Matrices. 9(4), 803–814 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kusraev, A.G.: Dominated Operators. Kluwer Academic, Dordrecht, Boston, London (2000)

    Book  MATH  Google Scholar 

  19. Leibowitz, G.M.: A note on Cesàro sequence spaces. Tamkang J. Math. 2, 151–157 (1971)

    MathSciNet  MATH  Google Scholar 

  20. Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces, vol. I. North-Holland Publishing Co., Amsterdam (1971)

    MATH  Google Scholar 

  21. Makarov, B.M., Weber, M.R.: Über die Realisierung von Vektorverbänden I. (Russian). Math. Nachrichten 60, 281–296 (1974)

    MathSciNet  MATH  Google Scholar 

  22. Malinowski, H., Weber, M.R.: On finite elements in \(f\)-algebras and product algebras. Positivity 17, 819–840 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pliev, M.A., Weber, M.R.: Finite elements in some vector lattices of nonlinear operators. Positivity 22(1), 245–260 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ricker, W.J.: The order spectrum of convolution operators in discrete Cesàro spaces. Indag. Math. 30(4), 527–535 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shiue, J.S.: On the Cesàro sequence spaces. Tamkang J. Math. 1, 19–25 (1970)

    MathSciNet  MATH  Google Scholar 

  26. Teichert, K., Weber, R.M.: On self majorizing element in Archimedean vector lattices. Positivity 18, 823–837 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Weber, R.M.: On finite and totally finite elements in vector lattices. Anal. Math. 21, 237–244 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Weber, R.M.: Finite elements in vector lattices. De Gruyter Germany, Berlin (2014)

    Book  MATH  Google Scholar 

  29. Zaanen, A.C.: Riesz Spaces II. North Holland, Amsterdam (1983)

    MATH  Google Scholar 

Download references

Funding

Funding was provided by Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (Grant No. 1059B191900662).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Gönüllü.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

F. Polat was supported for a one-year stay in 2022 at Technische Universität Dresden by the Scientific and Technological Research Council of Turkey (TUBITAK) in the context of the 2219-Post Doctoral Fellowship Program.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gönüllü, U., Polat, F. & Weber, M.R. Cesàro vector lattices and their ideals of finite elements. Positivity 27, 27 (2023). https://doi.org/10.1007/s11117-023-00977-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11117-023-00977-7

Keywords

Mathematics Subject Classification

Navigation