Log in

Rapidly solidified high-temperature aluminum alloys. I. Structure

  • Sintered Metals and Alloys
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The paper examines the phase composition of a number of high-temperature aluminum alloys formed in rapid solidification. The main strengthening phases and associated phase transitions in Al–Fe–Ce, Al–Fe–Cr–(TM), Al–Cr–Zr(Mn), and Al–Fe–V(Mo)–Si alloys have been studied. The phase composition of the alloys is shown to be critically dependent on the cooling rate. High-temperature materials are particularly sensitive to the solidification rate since they are doped by nonsoluble elements. Fine quasicrystalline phases, which make a significant contribution to strengthening at low and high temperatures, are present in rapidly solidified materials doped with iron. Besides these phases, Al3TM intermetallics characterized by high thermal stability and low coarsening rate play an important role in modern materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. J. Wadsworth, “The evolution of technology for structural materials over the last 50 years,” JOM, No. 2, 41–47 (2007).

  2. S. K. Das and W. Yin, “The worldwide aluminum economy: The current state of the industry,” JOM, No. 11, 58–63 (2007).

  3. O. D. Neikov, S. S. Naboychenko, and G. Dowson (eds.), “Advanced aluminum alloy powders,” Handbook of Non-Ferrous Metal Powders, Elsevier Publishers (2009), pp. 284–313.

  4. H. Jones, “A perspective on the development of rapid solidification and nonequilibrium processing and its future,” Mat. Sci. Eng. (A), 304–306, 11–19 (2001).

    Article  Google Scholar 

  5. K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Criteria for develo** castable, creep-resistant aluminum based alloys—A review,” Z. Metallkunde, 97, No. 3, 246–265 (2006).

    CAS  Google Scholar 

  6. G. J. Hildenman, “Aluminum powder alloys—an overview,” in: New Light Alloys. AGARD Lecture Series, No. 174, Advisory Group for Aerospace Research and Development, NATO (1990), pp. 5.1–5.25.

  7. D. Vojtech, J. Verner, J. Šerák, et al., “Properties of thermally stable PM Al–Cr based alloy,” Mat. Sci. Eng. (A), 458, 371–380 (2007).

    Article  Google Scholar 

  8. K. E. Knipling, Development of a Nanoscale Precipitation-Strengthened Creep-Resistant Aluminum Alloy Containing Trialuminide Precipitates, A dissertation submitted to the graduate school in partial fulfillment of the requirements for the degree doctor of philosophy, Northwestern University, Evanston, Illinois, USA (2006), p. 230.

  9. R. Ayer, L. M. Angers, R. R. Mueller, et al., “Microstructural characterization of the dispersed phases in Al–Ce–Fe system,” Metal. Trans. (A), 19, No. 7, 1645–1656 (1988).

    Article  Google Scholar 

  10. M. L. Oevecoglu, C. Suryanarayana, and W. D. Nix, “Identification of precipitate phases in a rapidly solidified Al–Fe–Ce alloy mechanically alloyed,” Metal. Mater. Trans. (A), 27, No. 4, 1033–1041 (1996).

    Article  Google Scholar 

  11. K. N. Ramakrishnan, “Investigation of the effect of powder particle size distribution on the powder microstructure and mechanical properties of consolidated material made from a rapidly solidified Al–Fe– Ce alloy powder. Part I. Powder microstructure,” Mater. Character., 33, 119–128 (1994).

    Article  CAS  Google Scholar 

  12. O. D. Neikov, Yu. V. Milman, A. I. Sirko, et al., “Al–Fe–Ce alloys based on water-atomized powders for high-temperature applications,” Powder Metall. Met. Ceram., 46, No. 9–10, 429–435 (2007).

    Article  CAS  Google Scholar 

  13. O. D. Neikov, Yu. V. Milman, A. I. Sirko, et al., “Elevated temperature aluminum alloys produced by water atomization,” Mater. Sci. Eng. (A), 477, No. 1–2, 80–85 (2008).

    Article  Google Scholar 

  14. M. Kubota, M. Sugamata, and J. Kaneko, “P/M materials of rapidly solidified Al–Ce–X ternary alloys,” J. Jpn. Inst. Light Metal., 43, No. 10, 509–515 (1993).

    Article  CAS  Google Scholar 

  15. K. N. Ramakrishnan, H. B. McShane, and T. Sheppard, “Extrusion processing parameter–mechanical property correlations in rapidly solidified A1–6.7 Fe–5.9 Ce and Al–6.2 Fe–5.9 Ce–1.63 Si% (wt.) alloy powders,” Mater. Sci. Tech., 9, 104–110 (1993).

    Article  CAS  Google Scholar 

  16. V. I. Dobatkin, V. I. Evlagin, and V. M. Fedorov, Rapidly Solidified Aluminum Alloys [in Russian], VILS, Moscow (1995), p. 335.

    Google Scholar 

  17. P. Jurci, M. Dománková, B. Šuštaršic, and M. Balog, “Structure and properties of PM Al–7Cr alloy prepared by rapid solidification,” Powder Metall. Progress, 8, No. 3, 217–229 (2008).

    CAS  Google Scholar 

  18. D. G. Eskin and L. S. Toropova, “Tensile and elastic properties of deformed heterogeneous aluminum alloys at room and elevated temperatures,” Mater. Sci. Eng. (A), 183, L1–L4 (1994).

    Article  CAS  Google Scholar 

  19. N. J. E. Adkins and P. Tsakiropoulos, “The distribution of heterogeneous nucleants in A1–Cr alloy powders,” Mater. Sci. Eng. (A), 133, 767–770 (1991).

    Article  Google Scholar 

  20. J. D. Cotton and M. J. Kaufman, “Microstructural evolution in rapidly solidified Al–Fe alloys: An alternative explanation,” Metal. Trans. (A), 22, No. 4, 927–934 (1991).

    Article  Google Scholar 

  21. W. E. Frazier and N. J. Koczak, “Mechanical and thermal stability of powder metallurgy aluminum– titanium alloys,” Scripta Metall., 21, 129–134 (1987).

    Article  CAS  Google Scholar 

  22. E. F. Kazakova, T. P. Loboda, and Yu. I. Rusnyak, “Formation of oversaturated solid solutions in alloys of aluminum with Mo, Ti, Zr, and Cr,” Metalloved. Term. Obrab. Mater., No. 10, 24–28 (2009).

  23. M. Galano, F. Audebert, I. C. Stone, and B. Cantor, “Nanoquasicrystalline Al–Fe–Cr-based alloys. Part I: Phase transformations,” Acta Mater., 57, 5107–5119 (2009).

    Article  CAS  Google Scholar 

  24. R. Yearim and D. Shechtman, “The structure of rapidly solidified Al–Fe–Cr alloys,” Metal. Trans. (A), 13, No. 11, 1891–1898 (1982).

    Article  CAS  Google Scholar 

  25. M. V. Karpets, S. O. Firstov, and L. D. Kulak, “Phase formation in rapidly quenched Al–Fe–Cr alloys in the presence of quasicrystals,” Fiz. Khim. Tverd. Tela, 7, No. 1, 147–151 (2006).

    CAS  Google Scholar 

  26. A. Garcia-Escorial, V. F. Cremaschi, E. Natale, and M. Lieblich, “Thermal evolution of nanoquasicrystalline Al93Fe3Cr2Ti2 alloy,” J. Alloys Compd., 434–435, 215–216 (2007).

    Article  Google Scholar 

  27. M. Galano, F. Audebert, A. Garcia-Escorial, et al., “Nanoquasicrystalline Al–Fe–Cr-based alloys with high strength at elevated temperature,” J. Alloys Compd., 495, 372–376 (2010).

    Article  CAS  Google Scholar 

  28. Y. Nagaishi, M. Yamasaki, and Y. Kawamura, “Effect of process atmosphere on the mechanical properties of rapidly solidified powder metallurgy Al–Ti–Fe–Cr alloys,” Mater. Sci. Eng. (A), 449–451, 794–798 (2007).

    Article  Google Scholar 

  29. M. Yamasaki, Y. Nagaishi, and Y. Kawamura, “Inhibition of Al grain coarsening by quasicrystalline icosahedral phase in the rapidly solidified powder metallurgy Al–Fe–Ti–Cr alloy,” Scripta Mater., 56, 785– 788 (2007).

    Article  CAS  Google Scholar 

  30. Y. Kawamura, H.-B. Liu, A. Inoue, and T. Masumoto, “Rapidly solidified powder metallurgy Al–Ti–Fe alloys,” Scripta Mater., 37, No. 2, 205–210 (1997).

    Article  CAS  Google Scholar 

  31. D. Vojtech, A. Michalcova, and J. Pilch, “Structural characteristics and thermal stability of Al–5.7 Cr–2.5 Fe–1.3 Ti alloy produced by powder metallurgy,” J. Alloys Compd., 475, 151–156 (2009).

    Article  CAS  Google Scholar 

  32. H. M. Kimura, K. Sasamori, and A. Inoue, “Formation, microstructure and mechanical properties of Al–Fe base quasicrystalline alloys,” Mater. Sci. Eng. (A), 294–296, 168–172 (2000).

    Article  Google Scholar 

  33. A. Michalcova, D. Vojtech, G. Schumacher, et al., “Influence of cooling rate and cerium addition on rapidly solidified Al–TM alloys,” Kovove Mater., 48, 1–7 (2010).

    CAS  Google Scholar 

  34. Y. Q. Chen, Q. P. Cao, Y. Su, and S. Y. Zhang, “Structure of melt-spun Al–2.5 Ti–2.5 Fe–2.5 V alloy and structural changes during annealing,” Trans. Nonferrous Met. Soc. China, 13, No. 2, 377–380 (2003).

    Google Scholar 

  35. J. Q. Guo and N. S. Kazama, “Mechanical properties of rapidly solidified Al–Ti–Fe, Al–Cu–Fe and Al–Fe– Cu–Ti based alloys extruded from their atomized powders,” Mater. Sci. Eng. (A), 232, 177–182 (1997).

    Article  Google Scholar 

  36. C. Banjongprasert, S. C. Hogg, E. Liotti, et al., “Spray forming of bulk ultrafine-grained Al–Fe–Cr–Ti,” Metal. Mater. Trans. (A), 41, No. 12, 3208–3215 (2010).

    Article  CAS  Google Scholar 

  37. C. Zhang, Y. Wu, X. Cai, et al., “Icosahedral phase in rapidly solidified Al–Fe–Ce alloy,” Mater. Sci. Eng. (A), 321, No. 1–2, 226–231 (2002).

    Article  Google Scholar 

  38. K. L. Sahoo and I. C. Stone, “Effect of Si on the formation and stability of the icosahedral quasicrystalline phase in Al–Fe–Cr–Ti alloys,” Phil. Mag. Letts., 85, No. 5, 231–245 (2005).

    Article  CAS  Google Scholar 

  39. D. J. Skinner, “The physical metallurgy of dispersion strengthened Al–Fe–V–Si alloys,” in: Y. W. Kim and W. M. Griffith (eds.), Dispersion Strengthened Aluminum Alloys, TMS, Warrendale, USA (1988), pp. 181–197.

    Google Scholar 

  40. P. Y. Li, S. L. Dai, C. Y. Li, and B. C. Liu, “Some developments in rapidly solidified aluminum alloys for elevated temperature applications,” Acta Metall. Sinica, 12, No. 4, 452–461 (1999).

    CAS  Google Scholar 

  41. P. Y. Li, H. J. Yu, S. C. Chai, and Y. R. Li, “Microstructure and properties of rapidly solidified powder metallurgy Al–Fe–Mo–Si alloys,” Scripta Mater., 49, 819–824 (2003).

    Article  CAS  Google Scholar 

  42. V. K. Vasudevan and H. L. Fraser, “The microstructures of rapidly solidified and heat-treated Al–8Fe– 2Mo–Si alloy,” Mater. Sci. Eng. (A), 98, 131–136 (1988).

    CAS  Google Scholar 

  43. H. Qu, W. Liu, G. Zhou, et al., “Study on the precipitated behavior of the strengthening phase Al12(Fe,X)3Si in Al–Fe–X–Si alloys with EET theory,” Adv. Mater. Res., 152–153, 743–747 (2011).

    Google Scholar 

  44. H. J. Koh, W. J. Park, and N. J. Kim, “Identification of metastable phases in strip-cast and spray-cast Al– Fe–V–Si alloys,” Mater. Trans. JIM, 39, No. 9, 982–988 (1998).

    CAS  Google Scholar 

  45. A. K. Srivastava, S. N. Ojha, and S. Ranganathan, “Microstructural features and heat flow analysis of atomized and spray-formed Al–Fe–V–Si alloy,” Metal. Mater. Trans. (A), 29, No. 8, 2205–2219 (1998).

    Article  Google Scholar 

  46. S. K. Das and L. A. Davis, “High performance aerospace alloys via rapid solidification processing,” Mater. Sci. Eng. (A), 98, 1–12 (1988).

    CAS  Google Scholar 

  47. Y. **ao, S. Li, W. Li, and R. Wang, “Microstructure and mechanical properties of rapidly solidified Al– Fe–Cr–Zr–V–Si alloy and their thermal stability,” Trans. Nonferrous Met. Soc. China, 8, No. 3, 477–480 (1998).

    CAS  Google Scholar 

  48. F. Wang, B. Zhu, B. **ong, et al., “An investigation on the microstructure and mechanical properties of spray-deposited Al–8.5Fe–1.1V–1.9Si alloy,” J. Mater. Process. Technol., 183, 386–389 (2007).

    Article  CAS  Google Scholar 

  49. Y. Wang, G. W. Lorimer, and F. R. Sale, “Microstructural development during consolidation of rapidly solidified Al–Fe–V–Si powder by VHP, extrusion and rolling,” Scripta Metall. Mater., 31, No. 10, 1337– 1342 (1994).

    Article  CAS  Google Scholar 

  50. E. S. Humphreys, P. J. Warren, J. M. Titchmarsh, and A. Cerezo, “Microstructure and chemistry of Al–V– Fe–Si nanoquasicrystalline alloys,” Mater. Sci. Eng. (A), 304–306, 844–848 (2001).

    Article  Google Scholar 

  51. Bin Lu, Dan-qing Yi, Wen-**an Li, et al., “Thermal stability and multispray deposition heat resistant Al– Ve–V–Si alloy,” Trans. Nonferrous Met. Soc. China, 12, No. 2, 273–276 (2002).

    CAS  Google Scholar 

  52. R. Tongsri, R. Dashwood, and H. Mcshane, “Microstructure and solidification of Al–Fe–(V, Si) alloy powders,” Sci. Asia, 30, 33–41 (2004).

    Article  CAS  Google Scholar 

  53. G. Champier, “Physical metallurgy of aluminum powder alloys,” in: New Light Alloys. AGARD Lecture Series, No. 174, Advisory Group for Aerospace Research and Development, NATO (1990), pp. 6.1–6.21.

  54. P. Liu and G. L. Dunlop, “Microstructural characterization of rapidly solidified A1–Mn–Cr alloys,” Mater. Sci. Eng. (A), 134, 1182–1187 (1991).

    Article  Google Scholar 

  55. P. Liu and G. L. Dunlop, “Microstructural development in a rapidly solidified Al–5 Mn–2.5 Cr alloy,” Mater. Sci. Eng. (A), 98, 437–441 (1988).

    CAS  Google Scholar 

  56. T. Rios, J. B. Fogagnolo, C. Bolfarini, et al., “Characterization of atomized and extruded Al92Fe3Cr2Mn3 alloy,” Rev. Adv. Mater. Sci., 18, 408–414 (2008).

    CAS  Google Scholar 

  57. M. S. Chuang, G. C. Tu, and E. Shimizu, “Effect of Nb-addition on the thermal stability of rapidly solidified Al–Cr–Zr alloys,” Res. Rep., 45, No. 9, 497–503 (1995).

    CAS  Google Scholar 

  58. Y. C. Chen, M. E. Fine, and J. R. Weertman, “Microstructural evolution and mechanical properties of rapidly solidified A1–Zr–V alloys at high temperatures,” Acta Metall. Mater., 38, No. 5, 771–780 (1990).

    Article  CAS  Google Scholar 

  59. P. Liu, G. L. Dunlop, and L. Arnberg, “The effect of chromium content on the microstructure and properties of rapidly solidified Al–Mn–Cr alloys,” Int. J. Rapid Solid., 5, 229–249 (1990).

    CAS  Google Scholar 

  60. Z. H. Jia, G. Q. Hu, B. Forbord, and J. K. Solberg, “Enhancement of recrystallization resistance of Al–Zr– Mn by two-step precipitation annealing,” Mater. Sci. Eng. (A), 483–484, 195–198 (2008).

    Article  Google Scholar 

  61. H. A. Calderon, P. W. Voorhees, J. L. Murray, and G. Kostorz, “Ostwald ripening in concentrated alloys,” Acta Metall. Mater., 42, 991–1000 (1994).

    Article  CAS  Google Scholar 

  62. S. Mitra, “Elevated temperature mechanical properties of a rapidly solidified Al–Fe–V–Si alloy,” Scripta Metall. Mater., 27, 521–526 (1992).

    Article  Google Scholar 

  63. H. Jones, “Gas-atomized aluminum alloy powders and their products: an update 1996–2001,” Mater. Sci. Eng. (A), 375–377, 104–111 (2004).

    Article  Google Scholar 

  64. S. Iwamura and Y. Miura, “Loss in coherency and coarsening behavior of Al3Sc precipitates,” Acta Mater., 52, 591–600 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. D. Neikov.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 51, No. 7–8 (486), pp. 30–47, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krainikov, A.V., Neikov, O.D. Rapidly solidified high-temperature aluminum alloys. I. Structure. Powder Metall Met Ceram 51, 399–411 (2012). https://doi.org/10.1007/s11106-012-9448-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-012-9448-8

Keywords

Navigation