Log in

The effects of mycorrhizal associations on fine root decomposition in temperate and (sub)tropical forests

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Fine-root (diameter ≤ 2 mm) decomposition contributes significantly to nutrient cycling in terrestrial ecosystems. Roots with arbuscular mycorrhizas (AM) and ectomycorrhizas (ECM) differ in root chemistry, which might affect root decomposition rate, but whether this effect differs across forest biomes is unknown.

Methods

We used a compiled dataset from temperate and (sub)tropical forests (168 species from 84 studies) to investigate how root chemistry and climate influence fine-root decomposition with different mycorrhizal associations in (sub)tropical and temperate forests.

Results

We show that AM trees exhibited faster fine-root decomposition rates than ECM trees did in temperate forests, but not in (sub)tropical forests. In temperate forests, root decomposition rates decreased with increasing root lignin concentrations, and ECM trees had higher root lignin concentrations than AM trees did which likely caused the difference in their decomposition rates. In (sub)tropical forests, root decomposition rates were mainly determined by root phosphorus (P) concentration. ECM and AM trees had similar root P concentrations, and thus their root decomposition rates were similar. In addition, the root decomposition rate was not affected by climate in (sub)tropical or temperate forests. However, the root decomposition rates of both AM and ECM trees were similarly affected by root chemistry and climate for all forests.

Conclusions

The findings will help us better predict tree species effects on ecosystem processes by considering their mycorrhizal association, particularly in temperate forests, where AM and ECM species co-occur. Additionally, the findings provide a framework for linking the dynamics of organic matter in forests to fine root quality and climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamczyk B, Sietio OM, Strakoya P, Prommer J, Wild B, Hagner M, Pihlatie M, Fritze H, Richter A, Heinonsalo J (2019) Plant roots increase both decomposition and stable organic matter formation in boreal forest soil. Nat Commun 10:1–9

    Article  CAS  Google Scholar 

  • Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545

    Article  CAS  PubMed  Google Scholar 

  • Beidler KV, Pritchard SG (2017) Maintaining connectivity: understanding the role of root order and mycelial networks in fine root decomposition of woody plants. Plant Soil 420:19–36

    Article  CAS  Google Scholar 

  • Bonanomi G, Idbella M, Zotti M, Santorufo L, Motti R, Maisto G, De Marco A (2021) Decomposition and temperature sensitivity of fine root and leaf litter of 43 mediterranean species. Plant Soil 464:453–465

    Article  CAS  Google Scholar 

  • Bonfante P, Andrea G (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:1–11

    Article  Google Scholar 

  • Cai Y, Chang SX (2020) Disturbance effects on soil carbon and greenhouse gas emissions in forest ecosystems. Forests 11:297

    Article  Google Scholar 

  • Chapman SK, Langley JA, Hart SC, Koch GW (2006) Plants actively control nitrogen cycling: uncorking the microbial bottleneck. New Phytol 169:27–34

    Article  CAS  PubMed  Google Scholar 

  • Chen WL, Koide RT, Adams TS, DeForest JL, Cheng L, Eissenstat DM (2016) Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc Natl Acad Sci U S A 113:8741–8746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WL, Koide RT, Eissenstat DM (2018) Nutrient foraging by mycorrhizas: from species functional traits to ecosystem processes. Funct Ecol 32:858–869

    Article  Google Scholar 

  • Cleveland CC, Townsend AR (2006) Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc Natl Acad Sci U S A 103:10316–10321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleveland CC, Reed SC, Townsend AR (2006) Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492–503

    Article  PubMed  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van Der Heijden MGA, Pausas JG (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Corrales A, Mangan SA, Turner BL, Dalling JW (2016) An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol Lett 19:383–392

    Article  PubMed  Google Scholar 

  • Craig ME, Turner BL, Liang C, Clay K, Johnson DJ, Phillips RP (2018) Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Glob Change Biol 24:3317–3330

    Article  Google Scholar 

  • Du E, Terrer C, Pellegrini AF, Ahlström A, van Lissa CJ, Zhao X, **a N, Wu X, Jackson RB (2020) Global patterns of terrestrial nitrogen and phosphorus limitation. Nat Geosci 13:221–226

    Article  CAS  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    Article  CAS  PubMed  Google Scholar 

  • Fernandez CW, Kennedy PG (2015) Moving beyond the black-box: fungal traits, community structure, and carbon sequestration in forest soils. New Phytol 205:1378–1380

    Article  CAS  PubMed  Google Scholar 

  • Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu WD, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao JP, Cornelissen JHC (2013) Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. J Ecol 101:943–952

    Article  CAS  Google Scholar 

  • Goebel M, Hobbie SE, Bulaj B, Zadworny M, Archibald DD, Oleksyn J, Reich PB, Eissenstat DM (2011) Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure. Ecol Monogr 81:89–102

    Article  Google Scholar 

  • Guo D, **a M, Wei X, Chang W, Liu Y, Wang Z (2008) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol 180:673–683

    Article  PubMed  Google Scholar 

  • Guo LL, Deng MF, Yang S, Liu WX, Wang X, Wang J, Liu LL (2021) The coordination between leaf and fine root litter decomposition and the difference in their controlling factors. Glob Ecol Biogeogr 30:2286–2296

    Article  Google Scholar 

  • Hättenschwiler S, Coq S, Barantal S, Handa IT (2011) Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytol 189:950–965

    Article  PubMed  Google Scholar 

  • He LX, Jia ZQ, Li QX, Feng LL, Yang KY (2019) Fine-root decomposition characteristics of four typical shrubs in sandy areas of an arid and semiarid alpine region in western China. Ecol Evol 9:5407–5419

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrero-Jáuregui C, Oesterheld M (2018) Effects of grazing intensity on plant richness and diversity: a meta-analysis. Oikos 127:757–766

    Article  Google Scholar 

  • Hietz P, Turner BL, Wanek W, Richter A, Nock CA, Wright SJ (2011) Long-term change in the nitrogen cycle of tropical forests. Science 334:664–666

    Article  CAS  PubMed  Google Scholar 

  • Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30:357–363

    Article  PubMed  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci U S A 94:7362–7366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs LM, Sulman BN, Brzostek ER, Feighery JJ, Phillips RP (2018) Interactions among decaying leaf litter, root litter and soil organic matter vary with mycorrhizal type. J Ecol 106:502–513

    Article  CAS  Google Scholar 

  • Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A (2017) Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41:941–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Wang HM, Li SG, Fu XL, Dai XQ, Yan H, Kou L (2021) Mycorrhizal and environmental controls over root trait-decomposition linkage of woody trees. New Phytol 229:284–295

    Article  CAS  PubMed  Google Scholar 

  • Jo I, Fei SL, Oswalt CM, Domke GM, Phillips RP (2019) Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci Adv 5:eaav6358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller AB, Phillips RP (2019) Leaf litter decay rates differ between mycorrhizal groups in temperate, but not tropical, forests. New Phytol 222:556–564

    Article  CAS  PubMed  Google Scholar 

  • Keller AB, Brzostek ER, Craig ME, Fisher JB, Phillips RP (2021) Root-derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type. Ecol Lett 24:626–635

    Article  PubMed  Google Scholar 

  • Kong D, Ma C, Zhang Q, Li L, Chen X, Zeng H, Guo D (2014) Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol 203:863–872

    Article  PubMed  Google Scholar 

  • Kong D, Wang JJ, Kardol P, Wu HF, Zeng H, Deng XB, Deng Y (2016) Economic strategies of plant absorptive roots vary with root diameter. Biogeosciences 13:415–424

    Article  Google Scholar 

  • Kong D, Wang J, Wu H, Valverde-Barrantes OJ, Wang R, Zeng H, Kardol P, Zhang H, Feng Y (2019) Nonlinearity of root trait relationships and the root economics spectrum. Nat Commun 10:1–9

    Article  Google Scholar 

  • Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P et al (2016) Global carbon budget 2016. Earth Syst Sci Data 8:605–649

    Article  Google Scholar 

  • Lin C, Yang Y, Guo J, Chen G, **e J (2011) Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: dynamics of dry mass, nutrient and organic fractions. Plant Soil 338:311–327

    Article  CAS  Google Scholar 

  • Makkonen M, Berg MP, Handa IT, Hattenschwiler S, van Ruijven J, van Bodegom PM, Aerts R (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–1041

    Article  PubMed  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppalammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518

    Article  PubMed  Google Scholar 

  • Mueller KE, Hobbie SE, Chorover J, Reich PB, Eisenhauer N, Castellano MJ, Chadwick OA, Dobies T, Hale CM, Jagodzinski AM, Kalucka I, Kieliszewska-Rokicka B, Modrzynski J, Rozen A, Skorupski M, Sobczyk L, Stasinska M, Trocha LK, Weiner J et al (2015) Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry 123:313–327

    Article  CAS  Google Scholar 

  • Northup RR, Yu ZS, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229

    Article  CAS  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Parton W, Silver WL (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:940–940

    Article  CAS  Google Scholar 

  • Phillips RP, Brzostek E, Midgley MG (2013) The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol 199:41–51

    Article  CAS  PubMed  Google Scholar 

  • Prieto I, Stokes A, Roumet C (2016) Root functional parameters predict fine root decomposability at the community level. J Ecol 104:725–733

    Article  CAS  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing version.3.6.1 (2019-07-05) R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Rahman MM, Tsukamoto J, Rahman MM, Yoneyama A, Mostafa KM (2013) Lignin and its effects on litter decomposition in forest ecosystems. Chem Ecol 29:540–553

    Article  CAS  Google Scholar 

  • Schenk HJ, Jackson RB (2002) The global biogeography of roots. Ecol Monogr 72:311–328

    Article  Google Scholar 

  • See CR, McCormack ML, Hobbie SE, Flores-Moreno H, Silver WL, Kennedy PG (2019) Global patterns in fine root decomposition: climate, chemistry, mycorrhizal association and woodiness. Ecol Lett 22:946–953

    Article  PubMed  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    Article  PubMed  Google Scholar 

  • Soudzilovskaia NA, van Bodegom PM, Terrer C, van’t Zelfde M, McCallum I, McCormack ML, Fisher JB, Brundrett MC, de Sa NC, Tedersoo L (2019) Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat Commun 10:1–10

    Article  CAS  Google Scholar 

  • Soudzilovskaia NA, Vaessen S, Barcelo M, He JH, Rahimlou S, Abarenkov K, Brundrett MC, Gomes SIF, Merckx V, Tederesoo L (2020) FungalRoot: global online database of plant mycorrhizal associations. New Phytol 227:955–966

    Article  PubMed  Google Scholar 

  • Sun T, Mao Z, Han Y (2013) Slow decomposition of very fine roots and some factors controlling the process: a 4-year experiment in four temperate tree species. Plant Soil 372:445–458

    Article  CAS  Google Scholar 

  • Sun T, Hobbie SE, Berg B, Zhang HG, Wang QK, Wang ZW, Hattenschwiler S (2018) Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc Natl Acad Sci U S A 115:10392–10397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor MK, Lankau RA, Wurzburger N (2016) Mycorrhizal associations of trees have different indirect effects on organic matter decomposition. J Ecol 104:1576–1584

    Article  CAS  Google Scholar 

  • Valverde-Barrantes OJ, Smemo KA, Feinstein LM, Kershner MW, Blackwood CB (2018) Patterns in spatial distribution and root trait syndromes for ecto and arbuscular mycorrhizal temperate trees in a mixed broadleaf forest. Oecologia 186:731–741

    Article  PubMed  Google Scholar 

  • van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  Google Scholar 

  • Wang G, Post WM, Mayes MA, Frerichs JT, Sindhu J (2012) Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics. Soil Boil Biochem 48:28–38

    Article  Google Scholar 

  • Wang J, Defrenne C, McCormack ML, Yang L, Tian D, Luo Y, Hou E, Yan T, Li Z, Bu W, Chen Y, Niu S (2021) Fine-root functional trait responses to experimental warming: a global meta-analysis. New Phytol 230:1856–1867

    Article  CAS  PubMed  Google Scholar 

  • Wu YT, Deng MF, Huang JS, Yang S, Guo LL, Yang L, Ahirwal J, Peng ZY, Liu WX, Liu LL (2022) Global patterns in mycorrhizal mediation of soil carbon storage, stability, and nitrogen demand: a meta-analysis. Soil Boil Biochem 166:108578

  • **a M, Valverde-Barrantes OJ, Suseela V, Blackwood CB, Tharayil N (2021) Coordination between compound-specific chemistry and morphology in plant roots aligns with ancestral mycorrhizal association in woody angiosperms. New Phytol 232:1259–1271

    Article  PubMed  Google Scholar 

  • Yan H, Freschet GT, Wang H, Hogan JA, Li S, Valverde-Barrantes OJ, Fu X, Wang R, Dai X, Jiang L, Meng S, Yang F, Zhang M (2022) Mycorrhizal symbiosis pathway and edaphic fertility frame root economics space among tree species. New Phytol 234:1639–1653

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Wang W (2015) The decomposition of fine and coarse roots: their global patterns and controlling factors. Sci Rep 5:1–10

    Google Scholar 

  • Zhang DQ, Hui DF, Luo YQ, Zhou GY (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93

    Article  Google Scholar 

  • Zhu K, McCormack ML, Lankau RA, Egan JF, Wurzburger N (2018) Association of ectomycorrhizal trees with high carbon-to-nitrogen ratio soils across temperate forests is driven by smaller nitrogen not larger carbon stocks. J Ecol 106:524–535

    Article  CAS  Google Scholar 

  • Zhuang L, Yang W, Wu F, Tan B, Zhang L, Yang K, He R, Li Z, Xu Z (2018) Diameter-related variations in root decomposition of three common subalpine tree species in southwestern China. Geoderma 311:1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant numbers 32171599, 31870465). We are very grateful to Prof. Hans Lambers and Dr. Patrick Hayes from The University of Western Australia for their constructive comments, valuable suggestions in data analysis and editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could appear to influence the work reported in this paper.

Additional information

Responsible Editor: François Teste.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(CSV 41 kb)

ESM 2

(DOCX 197 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Tian, Q., Michelsen, A. et al. The effects of mycorrhizal associations on fine root decomposition in temperate and (sub)tropical forests. Plant Soil 487, 299–310 (2023). https://doi.org/10.1007/s11104-023-05925-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-05925-8

Keywords

Navigation