Log in

Soil type more than precipitation determines fine-root abundance in savannas of Kruger National Park, South Africa

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Our aim was to examine how soil type and precipitation affect fine-root abundance in savanna ecosystems across Kruger National Park (KNP), South Africa.

Methods

Fine-root distributions were measured in four sites that represent the natural factorial combination of soil types (basalt-derived clay or granite-derived sand) and precipitation regimes [wet (~750 mm mean annual precipitation) or dry (~500 mm mean annual precipitation)] that occur in KNP. Root area and biomass (at soil depths of 0–75 cm) were estimated from measurements of root number, length and width in images from minirhizotron tubes at each site. Measurements were made during one mid-season sampling during three subsequent years.

Results

Fine-root area was more than twice as large in clay (2.3 ± 0.0 mm2 cm−2) than sand (0.8 ± 0.3 mm2 cm−2) sites but did not differ between wet and dry sites. Root number, length and width, used to derive area, showed similar patterns to fine-root area. Fine-root biomass estimated from these values was 5.5 ± 0.6 Mg ha−1 in clay sites and 2.2 ± 0.9 Mg ha−1 in sand sites.

Conclusions

Across the four sites, a change from sand to clay soils had a greater effect on fine-root abundance and distributions than a 50% increase in precipitation from dry to wet sites. Results highlight the importance of soil properties on root dynamics and carbon pools in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

(MAP):

Mean annual precipitation

(KNP):

Kruger National Park

References

  • Archibald S, Scholes R (2007) Leaf green-up in a semi-arid African savanna–separating tree and grass responses to environmental cues. J Veg Sci 18:583–594

    Google Scholar 

  • Berry RS, Kulmatiski A (2017) A savanna response to precipitation intensity. PLoS One 12:e0175402. doi:10.1371/journal.pone.0175402

    Article  PubMed  PubMed Central  Google Scholar 

  • Bond WJ (2008) What limits trees in C4 grasslands and savannas? Annu Rev Ecol Evol Syst:641–659. doi:10.1146/annurev.ecolsys.39.110707.173411

  • Bond WJ (2010) Do nutrient-poor soils inhibit development of forests? A nutrient stock analysis. Plant Soil 334:47–60. doi:10.1007/s11104-010-0440-0

    Article  CAS  Google Scholar 

  • Bradford JB, Lauenroth WK, Burke IC, Paruelo JM (2006) The influence of climate, soils, weather, and land use on primary production and biomass seasonality in the US Great Plains. Ecosystems 9:934–950. doi:10.1007/s10021-004-0164-1

    Article  Google Scholar 

  • Bréda N, Granier A, Barataud F, Moyne C (1995) Soil water dynamics in an oak stand. Plant Soil 172:17–27

    Article  Google Scholar 

  • Buitenwerf R, Kulmatiski A, Higgins SI (2014) Soil water retention curves for the major soil types of the Kruger National Park. Koedoe 56. doi:10.4102/koedoe.v56i1.1228

  • Burnham KP, Anderson D (2003) Model selection and multi-model inference: a practical information-theoretic approch. Springer, New York

    Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world's upland forests. Oecologia 111: 1–11. doi:10.1007/s004420050201.

  • Colgan MS, Asner GP, Levick SR, Martin RE, Chadwick O (2012) Topo-edaphic controls over woody plant biomass in south African savannas. Biogeosciences 9:1809–1821. doi:10.5194/bg-9-1809-2012

    Article  Google Scholar 

  • Craine JM, Morrow C, Stock WD (2008) Nutrient concentration ratios and co-limitation in south African grasslands. New Phytol 179:829–836. doi:10.1111/j.1469-8137.2008.02513.x

    Article  CAS  PubMed  Google Scholar 

  • February EC, Higgins SI (2010) The distribution of tree and grass roots in savannas in relation to soil nitrogen and water. S Afr J Bot 76:517–523. doi:10.1016/j.sajb.2010.04.001

    Article  Google Scholar 

  • February EC, Higgins SI, Bond WJ, Swemmer L (2013) Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology 94:1155–1164. doi:10.1890/12-0540.1

    Article  PubMed  Google Scholar 

  • Fransen B, de Kroon H, Berendse F (1998) Root morphological plasticity and nutrient acquisition of perennial grass species from habitats of different nutrient availability. Oecologia 115:351–358. doi:10.1007/s004420050527

    Article  PubMed  Google Scholar 

  • Franzen D (2001) The role of species richness for recruitment in a seminatural grassland. Oikos 95:409–415

    Article  Google Scholar 

  • Grace J, José JS, Meir P, Miranda HS, Montes RA (2006) Productivity and carbon fluxes of tropical savannas. J Biogeogr 33:387–400. doi:10.1111/j.1365-2699.2005.01448.x

    Article  Google Scholar 

  • Groen TA, van Langevelde F, van de Vijver CADM, Govender N, Prins HHT (2008) Soil clay content and fire frequency affect clustering in trees in south African savannas. J Trop Ecol 24:269–279. doi:10.1017/s0266467408004872

    Article  Google Scholar 

  • Haverd V, Smith B, Raupach M, Briggs P, Nieradzik L, Beringer J, Hutley L, Trudinger C, Cleverly J (2015) Coupling carbon allocation with leaf and root phenology predicts tree-grass partitioning along a savanna rainfall gradient. Biogeosci Discuss 13: 761–779. doi:10.5194/bg-13-761-2016

  • Hendrick RL, Pregitzer KS (1992) The demography of fine roots in a northern hardwood forest. Ecology 73:1094–1104

    Article  Google Scholar 

  • Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo DL (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J Ecol 94:40–57. doi:10.1111/j.1365-2745.2005.01067.x

    Article  Google Scholar 

  • Hook PB, Burke IC (2000) Biogeochemistry in a shortgrass landscape: control by topography, soil texture, and microclimate. Ecology 81:2686–2703. doi:10.1890/0012-9658(2000)081[2686:biaslc]2.0.co;2

    Article  Google Scholar 

  • Hook PB, Burke IC, Lauenroth WK (1991) Heterogeneity of soil and plant N and C associated with individual plants and openings in north American shortgrass steppe. Plant Soil 138:247–256

    Article  CAS  Google Scholar 

  • Hopcraft JGC, Olff H, Sinclair A (2010) Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends Ecol Evol 25:119–128

    Article  PubMed  Google Scholar 

  • Jackson RB, Mooney HA, Schulze E-D (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci 94:7362–7366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488. doi:10.1016/S1360-1385(00)01766-0

    Article  CAS  PubMed  Google Scholar 

  • Jackson RB, Banner JL, Jobbagy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626. doi:10.1016/j.tree.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  • Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001) Advancing fine root research with minirhizotrons. Environ Exp Bot 45:263–289. doi:10.1016/S0098-8472(01)00077-6

    Article  PubMed  Google Scholar 

  • Joslin JD, Wolfe MH (1999) Disturbances during minirhizotron installation can affect root observation data. Soil Sci Soc Am J 63:218–221. doi:10.2136/sssaj 1999.03615995006300010031x

    Article  CAS  Google Scholar 

  • Koerner SE, Collins SL (2014) Interactive effects of grazing, drought, and fire on grassland plant communities in North America and South Africa. Ecology 95:98–109. doi:10.1890/13-0526.1

    Article  PubMed  Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cycles 19:GB2015. doi:10.1029/2003GB002199

    Article  Google Scholar 

  • Kulmatiski A, Beard KH (2004) Reducing sampler error in soil research. Soil Biol Biochem 36:383–385. doi:10.1016/j.soilbio.2003.10.004

    Article  CAS  Google Scholar 

  • Kulmatiski A, Beard KH (2013a) Root niche partitioning among grasses, saplings, and trees measured using a tracer technique. Oecologia 171:25–37. doi:10.1007/s00442-012-2390-0

    Article  PubMed  Google Scholar 

  • Kulmatiski A, Beard KH (2013b) Woody plant encroachment facilitated by increased precipitation intensity. Nature Clim Change 3:833–837. doi:10.1038/nclimate1904 http://www.nature.com/nclimate/journal/v3/n9/abs/nclimate1904.html#supplementary-information

    Article  CAS  Google Scholar 

  • Kulmatiski A, Beard KH, Verweij RJT, February EC (2010) A depth-controlled tracer technique measures vertical, horizontal and temporal patterns of water use by trees and grasses in a subtropical savanna. New Phytol 188:199–209. doi:10.1111/j.1469-8137.2010.03338.x

    Article  PubMed  Google Scholar 

  • Kulmatiski A, Adler PB, Stark JM, Tredennick AT (2017) Water and nitrogen uptake are better associated with resource availability than root biomass. Ecosphere 8:e01738. doi:10.1002/ecs2.1738

    Article  Google Scholar 

  • Leuschner C, Hertel D, Schmid I, Koch O, Muhs A, Hölscher D (2004) Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil 258:43–56. doi:10.1023/b:plso.0000016508.20173.80

    Article  CAS  Google Scholar 

  • Maire V, Gross N, Da Silveira PL, Picon-Cochard C, Soussana J-F (2009) Trade-off between root nitrogen acquisition and shoot nitrogen utilization across 13 co-occurring pasture grass species. Funct Ecol 23:668–679. doi:10.1111/j.1365-2435. 2009.01557.x

    Article  Google Scholar 

  • Mazzacavallo MG, Kulmatiski A (2015) Modelling water uptake provides a new perspective on grass and tree coexistence. PLoS One 10:e0144300. doi:10.1371/journal.pone.0144300

    Article  PubMed  PubMed Central  Google Scholar 

  • McNaughton SJ, Banyikwa FF, McNaughton MM (1998) Root biomass and productivity in a grazing ecosystem: the Serengeti. Ecology 79:587–592. doi:10.1890/0012-9658(1998)070587:rbapia]2.0.co;2

  • Metcalfe D, Williams M, Aragão L, Da Costa A, De Almeida S, Braga A, Gonçalves P, De Athaydes J, Junior S, Malhi Y (2007) A method for extracting plant roots from soil which facilitates rapid sample processing without compromising measurement accuracy. New Phytol 174:697–703. doi:10.1111/j.1469-8137.2007.02032.x

    Article  CAS  PubMed  Google Scholar 

  • Mills AJ, Fey MV (2005) Interactive response of herbivores, soils and vegetation to annual burning in a south African savanna. Austral Ecol 30:435–444. doi:10.1111/j.1442-9993.2005.01487.x

    Article  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Chang Biol 12:84–96. doi:10.1111/j.1365-2486.2005.001043.x

    Article  Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut JC, Seastedt T, Garcia Moya E, Kamnalrut A, Kinyamario JI (1993) Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob Biogeochem Cycles 7:785–809. doi:10.1029/93gb02042

    Article  CAS  Google Scholar 

  • Picon-Cochard C, Pilon R, Tarroux E, Pagès L, Robertson J, Dawson L (2012) Effect of species, root branching order and season on the root traits of 13 perennial grass species. Plant Soil 353:47–57. doi:10.1007/s11104-011-1007-4

    Article  CAS  Google Scholar 

  • Priyadarshini KVR, de Bie S, Heitkönig IMA, Woodborne S, Gort G, Kirkman KP, Prins HHT (2016) Competition with trees does not influence root characteristics of perennial grasses in semi-arid and arid savannas in South Africa. J Arid Environ 124:270–277. doi:10.1016/j.jaridenv.2015.09.006

    Article  Google Scholar 

  • Rutherford MC (1993) Empiricism and the prediction of primary production at the mesoscale: a savanna example. Ecol Model 67:129–146. doi:10.1016/0304-3800(93)90002-A

    Article  Google Scholar 

  • Rytter R-M, Rytter L (2012) Quantitative estimates of root densities at minirhizotrons differ from those in the bulk soil. Plant Soil 350:205–220. doi:10.1007/s11104-011-0896-6

    Article  CAS  Google Scholar 

  • Sankaran M (2008) Woody cover in African savannas: the role of resources, fire and herbivory. Glob Ecol Biogeogr 17:236–245. doi:10.1111/j.1466-8238.2007.00360.x

    Article  Google Scholar 

  • Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS, Gignoux J, Higgins SI, Le Roux X, Ludwig F, Ardo J, Banyikwa F, Bronn A, Bucini G, Caylor KK, Coughenour MB, Diouf A, Ekaya W, Feral CJ, February EC, Frost PGH, Hiernaux P, Hrabar H, Metzger KL, Prins HHT, Ringrose S, Sea W, Tews J, Worden J, Zambatis N (2005) Determinants of woody cover in African savannas. Nature 438:846–849

    Article  CAS  PubMed  Google Scholar 

  • Sarmiento G (1984) The ecology of neotropical savannas. Harvard University Press, Cambridge, Massachusetts, USA

  • Saxton KE, Rawls WJ, Romberger JS, Papendick RI (1986) Estimating generalized soil water characteristics from texture. Soil Sci Soc Am J 50:1031–1036

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494. doi:10.1046/j.1365-2745.2002.00682.x

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2005) Map** the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126:129–140. doi:10.1016/j.geoderma.2004.11.018

    Article  Google Scholar 

  • Scholes RJ (1988) Response of three semi-arid savannas on contrasting soils to the removal of the woody component. University of Witwatersand, Johannesburg

    Google Scholar 

  • Scholes RJ, Bond WJ, Eckhardt HC (2003) Vegetation dynamics in the Kruger ecosystem. The Kruger Experience. Island Press, Washington, USA

  • Scholtz R, Kiker GA, Smit IPJ, Venter FJ (2014) Identifying drivers that influence the spatial distribution of woody vegetation in Kruger National Park, South Africa. Ecosphere 5:1–12. doi:10.1890/es14-00034.1

    Article  Google Scholar 

  • Smit IPJ (2011) Resources driving landscape-scale distribution patterns of grazers in an African savanna. Ecography 34:67–74. doi:10.1111/j.1600-0587.2010.06029.x

    Article  Google Scholar 

  • Smit GN, Rethman NFG (1998) Root biomass, depth distribution and relations with leaf biomass of Colophospermum mopane. S Afr J Bot 64: 38-43. doi:doi:10.1016/S0254-6299(15)30825-5.

  • Smit IPJ, Smit CF, Govender N, Mvd L, MacFadyen S (2013) Rainfall, geology and landscape position generate large-scale spatiotemporal fire pattern heterogeneity in an African savanna. Ecography 36:447–459. doi:10.1111/j.1600-0587.2012.07555.x

    Article  Google Scholar 

  • Smithwick EAH, Lucash MS, McCormack ML, Sivandran G (2014) Improving the representation of roots in terrestrial models. Ecol Model 291:193–204. doi:10.1016/j.ecolmodel.2014.07.023

    Article  CAS  Google Scholar 

  • Snyman HA (2005) Rangeland degradation in a semi-arid South Africa—I: influence on seasonal root distribution, root/shoot ratios and water-use efficiency. J Arid Environ 60:457–481. doi:10.1016/j.jaridenv.2004.06.006

    Article  Google Scholar 

  • Staver AC, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–232

    Article  CAS  PubMed  Google Scholar 

  • Träger S, Wilson SD (2016) Root heterogeneity along an arctic elevational gradient: the importance of resolution. Funct Ecol. doi:10.1111/1365-2435.12721

  • Venter F (1986) Soil patterns associated with the major geological units of the Kruger National Park. Koedoe 29:125–138

    Google Scholar 

  • Venter FJ, Scholes RJ, Eckhardt HC (2003) The abiotic template and its associated vegetation pattern. In: du Toit J, Rogers K, Biggs H (eds) The Kruger experience. Island Press, Washington D.C

    Google Scholar 

  • Walter H (1971) Ecology of tropical and subtropical vegetation. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Warren CP, Kulmatiski A, Beard KH (2015) A combined tracer/evapotranspiration model approach estimates plant water uptake in native and non-native shrub-steppe communities. J Arid Environ 121:67–78. doi:10.1016/j.jaridenv.2015.06.001

    Article  Google Scholar 

  • Wells CG, Birchfield S (2008) Rootfly: software for minirhizotron image analysis. Clemson University. Clemson, South Carolina, USA

  • Weltzin JF, McPherson GR (2000) Implications of precipitation redistribution for shifts in temperate savanna ecotones. Ecology 81:1902–1913. doi:10.1890/0012-9658(2000)081[1902:ioprfs]2.0.co;2

    Article  Google Scholar 

  • Wessels KJ, Prince SD, Zambatis N, MacFadyen S, Frost PE, Van Zyl D (2006) Relationship between herbaceous biomass and 1-km2 advanced very high resolution radiometer (AVHRR) NDVI in Kruger National Park, South Africa. Int J Remote Sens 27:951–973. doi:10.1080/01431160500169098

    Article  Google Scholar 

  • Yuan Z, Chen HY (2012) Indirect methods produce higher estimates of fine root production and turnover rates than direct methods. PLoS One 7:e48989. doi:10.1371/journal.pone.0048989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeppel M, Macinnis-Ng C, Palmer A, Taylor D, Whitley R, Fuentes S, Yunusa I, Williams M, Eamus D (2008) An analysis of the sensitivity of sap flux to soil and plant variables assessed for an Australian woodland using a soil–plant–atmosphere model. Funct Plant Biol 35:509–520. doi:10.1071/FP0811

    Article  Google Scholar 

  • Zhou X, Talley M, Luo Y (2009) Biomass, litter, and soil respiration along a precipitation gradient in southern Great Plains, USA. Ecosystems 12:1369–1380

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Andrew Mellon Foundation for financial support, South African National Parks for allowing us to do this research (project registration number 213896412). Field managers: S. Doucette-Riis, M. Cooper, M. Mazzacavallo, M. Keretetsi, S. Heath and L. Hierl. Field/laboratory assistants: W. Sibuye, R. Mashele, and V. Sibuye. Statistical advice: S. Durham and A. Tredennick. Experiments complied with the present laws of the Republic of South Africa. This research was supported by the Utah Agricultural Experiment Station, Utah State University, and approved as journal paper number 8958.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Kulmatiski.

Additional information

Responsible Editor: Susan Schwinning .

Electronic supplementary material

Online Resource 1

(DOCX 30 kb)

Online Resource 2

(DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulmatiski, A., Sprouse, S.R.C. & Beard, K.H. Soil type more than precipitation determines fine-root abundance in savannas of Kruger National Park, South Africa. Plant Soil 417, 523–533 (2017). https://doi.org/10.1007/s11104-017-3277-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3277-y

Keywords

Navigation