Log in

Influence of selenium (Se) on carbohydrate metabolism, nodulation and growth in alfalfa (Medicago sativa L.)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Selenium (Se) is an essential micronutrient for humans and animals, but its role in plants remains unclear. Selenium enters the food chain via crops, and thus, plants constitute an essential source of Se in human nutrition. As a N2-fixing plant of high nutritive value, alfalfa (Medicago sativa L.) is an important forage legume for sustainable agriculture. This study investigated the effects of Se on carbohydrate metabolism, nodulation and growth in alfalfa. In addition, the impact of Se on fructose 1,6-bisphosphatase (F1,6-BPase), a key enzyme in carbohydrate metabolism, as well as on nitrogenase activity in N-metabolism was examined.

Methods

Alfalfa was grown either in perlite or nutrient solution at different Se (0, 1, 5, 10 and 15 μmol L−1 Na2SeO4) and N (2 and 10 mmol L−1) concentrations. Plants in perlite were inoculated with Sinorhizobium meliloti and used for studies on nodulation, growth and nitrogenase activity. Plants grown in nutrient solution were used for studies on carbohydrate metabolism.

Results

Selenium applications (5 and 15 μmol L−1) increased soluble sugars (SS) in the leaves, on average, by 44 % in both adequate-N and low-N-plants respectively. At the low-N level, Se (10 and 15 μmol L−1) increased SS in the stems and roots, on average, by 29 % and 45 % respectively. In adequate-N-plants, Se increased SS in the stems, on average, by 46 % but had no effect in the roots. Selenium (10 and 15 μmol L−1) enhanced starch accumulation in the leaves about 55 % in low-N-plants. At the adequate-N level, Se (15 μmol L−1) increased starch accumulation about 36 %. However, the starch concentrations in the roots were inconsistent. Selenium also increased F1,6-BPase activity in the upper leaflets. In addition, in low-N-plants, the low Se (1 μmol L−1 and 5 μmol L−1) applications increased nodule number (NN) about 40 % and 62 % respectively, but NN decreased with plant growth. In symbiotic plants, Se did not significantly affect nodule fresh weight (NFW), nitrogenase activity and N concentrations. Selenium also had a slightly negative effect on dry matter accumulation in shoots and roots of alfalfa.

Conclusions

The results indicate that, Se up-regulates carbohydrate metabolism via altered redox potential which may have some stimulatory effects on nodulation. These effects were, however, dependent on the Se concentration and the developmental stage of the plant. More detailed studies are needed to fully understand the role of Se in N2 fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AOAC (2002) Official Methods of Analysis of AOAC International. Volume I & II. 17th edition. AOAC International. 1st revision. Gaithersburg, MD, USA, Association of Analytical Communities

  • Banuelos GS, Vickerman DB, Trumble JT, Sharmon MC, Davis CD, Finley JW, Maylands HF (2002) Biotransfer possibilities of selenium from plants used in phytoremediation. Int J Phytorem 4:315–329

    Article  CAS  Google Scholar 

  • Broyer TC, Lee DC, Asher CJ (1966) Selenium Nutrition of Green Plants. Effect of selenite supply on growth and selenium content of alfalfa and subterranean clover. Plant Physiol 41:1425–1428

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  PubMed  CAS  Google Scholar 

  • Caetano-Anolles G, Bauer WD (1988) Feedback regulation of nodule formation in alfalfa. Planta 175:546–557

    Article  PubMed  CAS  Google Scholar 

  • Carrol BJ, Mathews A (1990) Nitrate inhibition of nodulation in legumes. In: Gresshoff PM (ed) Molecular Biology of Symbiotic Nitrogen Fixation. CRC Press Inc, pp 159–180

  • Cartes P, Gianfera L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276:359–367

    Article  CAS  Google Scholar 

  • Chen TF, Zheng WJ, Wong YS, Yang F (2008) Selenium-induced changes in activities of antioxidant enzymes and content of photosynthetic pigments in Spirulina platensis. J Integr Plant Biol 50(1):40–48

    Article  PubMed  CAS  Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    Article  PubMed  CAS  Google Scholar 

  • Cop**er RJ, Diamond AM (2001) Selenium deficiency and human disease. In Hatfield DL (ed) Selenium: its molecular biology and role in human health. Kluwer Academic Publisher, pp 219–331

  • de Souza MP, Pilon-Smits EAH, Lytle CM, Hwang S, Tai J, Honma TSU, Yeh L, Terry N (1998) Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiol 117:1487–1494

    Article  PubMed  Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–573

    Article  PubMed  Google Scholar 

  • Dénarié J, Debellé F, Truchet G, Promé JC (1993) Rhizobium and legume nodulation: A molecular dialogue. In: Palacios R, Mora J, Newton WE (eds) New horizons in nitrogen fixation. Kluwer, Dordrecht, pp 19–30

    Chapter  Google Scholar 

  • Djanaguiraman M, Durga Devi D, Shanker AK, Sheeba JA, Bangarusamy U (2005) Selenium—an antioxidative protectant in soybean during senescence. Plant Soil 272:77–86

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Seppänen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Fisher RF, Long SR (1992) Rhizobium-plant signal exchange. Nature 357:655–660

    Article  PubMed  CAS  Google Scholar 

  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related non-accumulators. New Phytol 173:517–525

    Article  PubMed  CAS  Google Scholar 

  • Geiger DR, Servaites JC (1994) Diurnal regulation of photosynthetic carbon metabolism in C3 plants. Annu Rev Plant Physiol Plant Mol Biol 45:235–256

    Article  Google Scholar 

  • Gifford RM, Evans LT (1981) Photosynthesis, carbon partitioning, and yield. Annu Rev Plant Physiol 32:485–509

    Article  CAS  Google Scholar 

  • Hardy RWF, Burns RC, Holsten RD (1973) Applications of the acetylene-ethylene assay for measurements of nitrogen fixation. Soil Biol Biochem 5:47–81

    Article  CAS  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  PubMed  CAS  Google Scholar 

  • Hartikainen H, Xue T (1999) The promotive effect of selenium on plant growth as trigged by ultraviolet irradiation. J Environ Qual 28:1272–1275

    Article  Google Scholar 

  • Hartikainen H, Ekholm P, Piironen V, Xue T, Koivu T, Yli-Halla M (1997) Quality of the ryegrass and lettuce yields as affected by selenium fertilization. Agr Food Sci Finl 6:381–387

    CAS  Google Scholar 

  • Hartikainen H, Xue T, Piironen V (2000) Selenium as an antioxidant and prooxidant in ryegrass. Plant Soil 225:193–200

    Article  CAS  Google Scholar 

  • Hawker S (1985) Sucrose. In: Dey PM, Dixon RA (eds) Biochemistry of storage carbohydrates in green plants. Academic Press, London, pp 1–51

    Google Scholar 

  • Hawrylak-Nowak B (2009) Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol Trace Elem Res 132:259–269

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. California Agricultural Experiment Station Circular 347. Berkely, CA, pp 1–39

  • Holaday A, Martindale W, Alred R, Brooks A, Leegood R (1992) Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature. Plant Physiol 98:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Joshi PA, Caetano-Anolles G, Graham ET, Gresslsoff PM (1993) Ultrastructure of transfer cells in spontaneous nodules of alfalfa (Medicago sativa). Protoplasma 172:64–76

    Article  Google Scholar 

  • Keskinen R, Turakainen M, Hartikainen H (2010) Plant availability of soil selenate additions and selenium distribution within wheat and ryegrass. Plant Soil 333:301–313

    Article  CAS  Google Scholar 

  • Kumpulainen J, Raittila AM, Lehto J, Koivistoinen P (1983) Electrothermal atomic absorption spectrometric determination of selenium in foods and diets. J Assoc Off Anal Chem 66:1129–1135

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1985) Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochem Soc Trans 11:591–592

    Google Scholar 

  • Long SP, Drake BG (1992) Photosynthetic CO2 assimilation and rising atmospheric CO2 concentration. In: Baker NR, Thomas H (eds) Topics in Photosynthesis Research. Elsevier, pp 69–104

  • Lyons GH, Genc Y, Soole K, Stangoulis JCR, Liu F, Graham RD (2009) Selenium increases seed production in Brassica. Plant Soil 318:73–80

    Article  CAS  Google Scholar 

  • Malik JA, Kumar S, Thakur P, Sharma S, Kaur N, Kaur R, Pathania D, Bhandhari K, Kaushal N, Singh K, Srivastava A, Nayyar H (2010) Promotion of Growth in Mungbean (Phaseolus aureus Roxb.) by Selenium is Associated with Stimulation of Carbohydrate Metabolism. Biol Trace Elem Res 143:530–539

    Article  PubMed  Google Scholar 

  • Marques IA, Anderson LE (1985) Changing Kinetic Properties of Fructose-1,6-bisphosphatase from Pea Chloroplasts during Photosynthetic Induction. Plant Physiol 77:807–810

    Article  PubMed  CAS  Google Scholar 

  • Michaud R, Lehman WF, Rumbaugh MD (1988) World distribution and historical development. In Hanson AA, Barnes DK, Hill Jr. RR (eds) Alfalfa and Alfalfa Improvement. Academic Press, pp 25–91

  • Naisbitt T, Sprent JI (1993) The long-term effects of nitrate on the growth and nodule structure of the caesalpinioid herbaceous legume Chamaecrista fasciculata Michaux. J Exp Bot 44:829–836

    Article  CAS  Google Scholar 

  • Nap J-P, Bisseling T (1990) Developmental biology of a plant prokaryote symbiosis: the legume root nodule. Science 250:948–954

    Article  PubMed  CAS  Google Scholar 

  • Padmaja K, Prasad DD, Pradad AR (1990) Selenium as a novel regulator of porphyrin biosynthesis in germinating seedlings of mung bean (Phaseolus vulgaris L.). Biochem Int 22:441–446

    PubMed  CAS  Google Scholar 

  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52(360):1383–1400

    Article  PubMed  CAS  Google Scholar 

  • Pennanen A, Xue T, Hartikainen H (2002) Protective role of selenium in plant subjected to severe UV irradiation stress. J Appl Bot 76:66–76

    CAS  Google Scholar 

  • Pilon-Smits EAH, Le Duc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, de Souza MP, Lytle CM, Shang C, Lugo T, Terry N (1998) Short communications. Selenium volatilization and assimilation by hybrid poplar (Populus tremula x alba). J Exp Bot 49:1889–1892

    CAS  Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  PubMed  CAS  Google Scholar 

  • Rani N, Dhillon KS, Dhillon SK (2005) Critical levels of selenium in different crops grown in an alkaline silty loam soil treated with selenite-Se. Plant Soil 277:367–374

    Article  CAS  Google Scholar 

  • Sánchez FJ, Manzanares M, de Andres EF, Tenorio JL, Ayerbe L (1998) Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Res 59:225–235

    Article  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    Article  PubMed  CAS  Google Scholar 

  • Stinner BR, Blair JM (1990) Ecological and agronomic characteristics of innovative crop** systems. In: Edwards CA et al (eds) Sustainable agricultural systems. St. Lucie Press, Florida, pp 123–140

    Google Scholar 

  • Terry N, Carlson C, Raab TK, Zayed AM (1992) Rates of selenium volatilization among crop species. J Environ Qual 21:341–344

    Article  CAS  Google Scholar 

  • Terry N, Zayed A, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  PubMed  CAS  Google Scholar 

  • Turakainen M, Hartikainen H, Seppänen MM (2004) Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J Agr Food Chem 52:5378–5382

    Article  CAS  Google Scholar 

  • United States Department of Agriculture Research Service (USDA 2007) National Nutrient Database Reference Release 21, Nutrient Data Laboratory Home Page http://www.ars.usda.gov.nutrient.da

  • Wan HF, Mikkelsen RL, Page AL (1988) Selenium uptake by some agricultural crops from Central California soils. J Environ Qual 17(2):269–272

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets: iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  PubMed  CAS  Google Scholar 

  • Williams MC, Mayland HF (1992) Selenium absorption by two-grooved milkvetch and western wheatgrass from selenomethionine, selenocystine, and selenite. J Range Manage 45:374–378

    Article  Google Scholar 

  • Xue T, Hartikainen H, Piironen V (2001) Antioxidative and growth-promoting effect of selenium in senescing lettuce. Plant Soil 237:55–61

    Article  CAS  Google Scholar 

  • Yao X, Chu J, Wang G (2009) Effects of selenium on wheat seedlings under drought stress. Biol Trace Elem Res 130:283–290

    Article  PubMed  CAS  Google Scholar 

  • Zayed AM, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Emil Aaltonen Foundation, the August Johannes and Aino Tiura Foundation, the Maj and Tor Nessling Foundation and the Ministry of Agriculture and Forestry are gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Owusu-Sekyere.

Additional information

Responsible Editor: Philip John White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owusu-Sekyere, A., Kontturi, J., Hajiboland, R. et al. Influence of selenium (Se) on carbohydrate metabolism, nodulation and growth in alfalfa (Medicago sativa L.). Plant Soil 373, 541–552 (2013). https://doi.org/10.1007/s11104-013-1815-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1815-9

Keywords

Navigation