Log in

Diazotrophic diversity, nifH gene expression and nitrogenase activity in a rice paddy field in Fujian, China

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The diazotrophic communities in a rice paddy field were characterized by a molecular polyphasic approach including DNA/RNA-DGGE fingerprinting, real time RT-PCR analysis of nifH gene and the measurement of nitrogen fixation activities. The investigation was performed on a diurnal cycle and comparisons were made between bulk and rhizosphere / root soil as well as between fertilized / unfertilized soils. Real time RT-PCR showed no significant difference in the total quantity of nifH expression under the conditions investigated. The functional diversity and dynamics of the nifH gene expressing diazotroph community investigated using RT-PCR-DGGE revealed high diurnal variations, as well as variation between different soil types. Most of the sequence types recovered from the DGGE gels and clone libraries clustered within nifH Cluster I and III (65 different nifH sequences in total). Sequence types most similar to Azoarcus spp., Metylococcus spp., Rhizobium spp., Methylocystis spp., Desulfovibrio spp., Geobacter spp., Chlorobium spp., were abundant and indicate that these species may be responsible for the observed diurnal variation in the diazotrophic community structure in these rice field samples. Previously described diazotrophic cyanobacterial genera in rice fields, such as Nostoc and Cyanothece, were present in the samples but not detectable in RT-PCR assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel Wahab AM (1980) Nitrogen-fixing nonlegumes in Egypt. I. Nodulation and N2(C2H2) fixation by Casuarina equisetifolia. Z Allg Mikrobiol 20:3–12

    CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed  Google Scholar 

  • Ariosa Y, Quesada A, Aburto J, Carrasco D, Carreres R, Leganes F, Fernandez Valiente E (2004) Epiphytic cyanobacteria on Chara vulgaris are the main contributors to N2 fixation in rice fields. Appl Environ Microbiol 70:5391–5397. doi:10.1128/AEM.70.9.5391-5397.2004

    Article  CAS  PubMed  Google Scholar 

  • Balandreau JP, Millier CR, Dommergues YR (1974) Diurnal variations of nitrogenase activity in the field. Appl Microbiol 27:662–665

    CAS  PubMed  Google Scholar 

  • Bürgmann H, Widmer F, Sigler WV, Zeyer J (2003) mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil. Appl Environ Microbiol 69:1928–1935. doi:10.1128/AEM.69.4.1928-1935.2003

    Article  PubMed  Google Scholar 

  • Choudhury ATMA, Kennedy IR (2004) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227. doi:10.1007/s00374-003-0706-2

    Article  Google Scholar 

  • Church MJ, Jenkins BD, Karl DM, Zehr JP (2005) Vertical distributions of nitrogen-fixing phylotypes at Stn ALOHA in the oligotrophic North Pacific Ocean. Aquat Microb Ecol 38:3–14. doi:10.3354/ame038003

    Article  Google Scholar 

  • Coelho MR, de Vos M, Carneiro NP, Marriel IE, Paiva E, Seldin L (2008) Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer. FEMS Microbiol Lett 279:15–22. doi:10.1111/j.1574-6968.2007.00975.x

    Article  CAS  PubMed  Google Scholar 

  • Cook KL, Britt JS (2007) Optimization of methods for detecting Mycobacterium avium subsp. paratuberculosis in environmental samples using quantitative, real-time PCR. J Microbiol Methods 69:154–160. doi:10.1016/j.mimet.2006.12.017

    Article  CAS  PubMed  Google Scholar 

  • Demba Diallo M, Reinhold-Hurek B, Hurek T (2008) Evaluation of PCR primers for universal nifH gene targeting and for assessment of transcribed nifH pools in roots of Oryza longistaminata with and without low nitrogen input. FEMS Microbiol Ecol 65:220–228. doi:10.1111/j.1574-6941.2008.00545.x

    Article  PubMed  Google Scholar 

  • Díez B, Bauer K, Bergman B (2007) Epilithic cyanobacterial communities of a marine tropical beach rock (Heron Island, Great Barrier Reef): diversity and diazotrophy. Appl Environ Microbiol 73:3656–3668. doi:10.1128/AEM.02067-06

    Article  PubMed  Google Scholar 

  • El-Shehawy R, Lugomela C, Ernst A, Bergman B (2003) Diurnal expression of hetR and diazocyte development in the filamentous non-heterocystous cyanobacterium Trichodesmium erythraeum. Microbiology 149:1139–1146. doi:10.1099/mic.0.26170-0

    Article  CAS  PubMed  Google Scholar 

  • Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141. doi:10.1046/j.1462-2920.2000.00078.x 2

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, López-Cortés A, Nübel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado plateau. Appl Environ Microbiol 67:1902–1910. doi:10.1128/AEM.67.4.1902-1910.2001

    Article  CAS  PubMed  Google Scholar 

  • Goto M, Ando S, Hachisuka Y, Yoneyama T (2005) Contamination of diverse nifH and nifH-like DNA into commercial PCR primers. FEMS Microbiol Lett 246:33–38. doi:10.1016/j.femsle.2005.03.042

    Article  CAS  PubMed  Google Scholar 

  • Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: Laboratory and field evaluation. Plant Physiol 43:1185–1207. doi:10.1104/pp.43.8.1185

    Article  CAS  PubMed  Google Scholar 

  • Henckel T, Friedrich M, Conrad R (1999) Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16 S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 65:1980–1990

    CAS  PubMed  Google Scholar 

  • Hsu S-F, Buckley DH (2009) Evidence for the functional significance of diazotroph community structure in soil. ISME J 3:124–136. doi:10.1038/ismej.2008.82

    Article  CAS  PubMed  Google Scholar 

  • Huang TC, Lin RF, Chu MK, Chen HM (1999) Organization and expression of nitrogen-fixation genes in the aerobic nitrogen-fixing unicellular cyanobacterium Synechococcus sp. strain RF-1. Microbiology 145:743–753

    Article  CAS  PubMed  Google Scholar 

  • Hurek T, Handley LL, Reinhold-Hurek B, Piche Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242. doi:10.1094/MPMI.2002.15.3.233

    Article  CAS  PubMed  Google Scholar 

  • Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, Zhou J (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol 67:4495–4503. doi:10.1128/AEM.67.10.4495-4503.2001

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen CS, Holben WE (2007) Quantification of mRNA in Salmonella sp. seeded soil and chicken manure using magnetic capture hybridization RT-PCR. J Microbiol Methods 69:315–321. doi:10.1016/j.mimet.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  • Kennedy IR, Choudhury ATMA, Kecskes ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244. doi:10.1016/j.soilbio.2004.04.006

    Article  CAS  Google Scholar 

  • Khan ZUM, Befum T, Mandal R, Hossain MZ (1994) Cyanobacteria in rice soils. World J Microbiol Biotechnol 10:296–298. doi:10.1007/BF00414867

    Article  Google Scholar 

  • Knauth S, Hurek T, Brar D, Reinhold-Hurek B (2005) Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ Microbiol 7:1725–1733. doi:10.1111/j.1462-2920.2005.00841.x

    Article  CAS  PubMed  Google Scholar 

  • Lim J, Do H, Shin SG, Hwang S (2008) Primer and probe sets for group-specific quantification of the Genera Nitrosomonas and Nitrosospira using real-time PCR. Biotechnol Bioeng 99:1374–1383. doi:10.1002/bit.21715

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Rosencrantz D, Liesack W, Conrad R (2006) Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ Microbiol 8:1351–1360. doi:10.1111/j.1462-2920.2006.01028.x

    Article  CAS  PubMed  Google Scholar 

  • Mohanty SR, Bodelier PL, Conrad R (2007) Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol Ecol 62:24–31. doi:10.1111/j.1574-6941.2007.00370.x

    Article  CAS  PubMed  Google Scholar 

  • Nakatsu CH, Torsvik V, Ovreas L (2000) Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci Soc Am J 64:1382–1388

    CAS  Google Scholar 

  • Novinscak A, Surette C, Filion M (2007) Quantification of Salmonella spp. in composted biosolids using a TaqMan qPCR assay. J Microbiol Methods 70:119–126. doi:10.1016/j.mimet.2007.03.019

    Article  CAS  PubMed  Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR Primers to amplify 16 S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    PubMed  Google Scholar 

  • Olson JB, Steppe TF, Litaker RW, Paerl HW (1998) N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microb Ecol 36:231–238. doi:10.1007/s002489900110

    Article  CAS  PubMed  Google Scholar 

  • Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133. doi:10.1016/j.micres.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  • Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103. doi:10.1016/S0923-2508(00)01172-4

    Article  CAS  PubMed  Google Scholar 

  • Quesada A, Nieva M, Leganes F, Ucha A, Martin M, Prosperi C, Fernandez-Valiente E (1998) Acclimation of cyanobacterial communities in rice fields and response of nitrogenase activity to light regime. Microb Ecol 35:147–155. doi:10.1007/s002489900069

    Article  CAS  PubMed  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751. doi:10.1128/AEM.67.10.4742-4751.2001

    Article  CAS  PubMed  Google Scholar 

  • Smit E, Leeflang P, Gommans S, van den Broek J, van Mil S, Wernars K (2001) Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Environ Microbiol 67:2284–2291. doi:10.1128/AEM.67.5.2284-2291.2001

    Article  CAS  PubMed  Google Scholar 

  • Song T, Mårtensson L, Eriksson T, Zheng WW, Rasmussen U (2005) Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. FEMS Microbiol Ecol 54:131–140. doi:10.1016/j.femsec.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  • Vaishampayan A, Sinha RP, Häder D-P, Dey T, Gupta AK, Bhan U, Rao AL (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 67:453–516. doi:10.1007/BF02857893

    Article  Google Scholar 

  • Wartiainen I, Eriksson T, Zheng WW, Rasmussen U (2008) Variation in the active diazotrophic community in rice paddy—nifH PCR-DGGE analysis of rhizosphere and bulk soil. Appl Soil Ecol 39:65–75. doi:10.1016/j.apsoil.2007.11.008

    Article  Google Scholar 

  • Wu L, Ma K, Lu Y (2009) Prevalence of betaproteobacterial sequences in nifH gene pools associated with roots of modern rice cultivars. Microb Ecol 57:58–68. doi:10.1007/s00248-008-9403-x

    Article  CAS  PubMed  Google Scholar 

  • **e CH, Yokota A (2005) Pleomorphomonas oryzae gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from paddy soil of Oryza sativa. Int J Syst Evol Microbiol 55:1233–1237. doi:10.1099/ijs.0.63406-0

    Article  CAS  PubMed  Google Scholar 

  • **e GH, Cai MY, Tao GC, Steinberger Y (2003) Cultivable heterotrophic N2-fixing bacterial diversity in rice fields in the Yangtze River Plain. Biol Fertil Soils 37:29–38

    CAS  Google Scholar 

  • Zehr JP, McReynolds LA (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55:2522–2526

    CAS  PubMed  Google Scholar 

  • Zehr JP, Mellon MT, Hiorns WD (1997) Phylogeny of cyanobacterial nifH genes: evolutionary implications and potential applications to natural assemblages. Microbiology 143:1443–1450

    Article  CAS  PubMed  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554. doi:10.1046/j.1462-2920.2003.00451.x

    Article  CAS  PubMed  Google Scholar 

  • Zehr JP, Bench SR, Mondragon EA, McCarren J, DeLong EF (2007) Low genomic diversity in tropical oceanic N2-fixing cyanobacteria. Proc Natl Acad Sci USA 104:17807–17812. doi:10.1073/pnas.0701017104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to UR from The Swedish International Development Cooperation Agency Department for Research Cooperation (Sida/SAREC) and The Swedish Research Link Programme. Grant from The Swedish Research Council (FORMAS) to RE is acknowledged. We also acknowledge the financial support from K. and A. Wallenberg Foundation. Dr. L. Zhou and Mr Z. Lin are acknowledged for help during the fieldwork, Ms C. Bin for help during fieldwork and DGGE experiments and Ms S. Vintila, Department of Botany, Stockholm University, for help with statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulla Rasmussen.

Additional information

Responsible Editor: Euan K. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mårtensson, L., Díez, B., Wartiainen, I. et al. Diazotrophic diversity, nifH gene expression and nitrogenase activity in a rice paddy field in Fujian, China. Plant Soil 325, 207–218 (2009). https://doi.org/10.1007/s11104-009-9970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9970-8

Keywords

Navigation